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A Projection Region

In Section 2] we compare the projection regions of different algorithms in Figure [2]
and conclude that the orthant step of OBProx-SG enjoys a much larger projection to
map a trial iterate to zero so that it is a more aggressive sparsity promotion mechanism
than the others. Hence the solutions computed by OBProx-SG tends to be more sparse.
In this Appendix, we present the deduction of the projection region for Orthant Step
in 1-dimensional example. The 1-dimensional result can be easily extended to higher-
dimensional space.

Proposition 1. Ifk € So, 0 < x;, € R, the Orthant Step of OBProx-SG yields next
iterate xy41 based on the trial iterate Ty, 11 = xy, — . Vfs, (zk) as follows

Pt — i Bees > ),
karl_{karl apA  ifTppr > 29)

0 otherwise.
Therefore, the projection region of Orthant Step is (—oo, ag\| to map &41 to zero if
x> 0. Similarly, the projection region as [—ay\, 00) is attained if xy, < 0.

Proof. 1t follows the definition of F as (9) and x, > 0 that

Fg, (z) = fs,(z) + Az, (30)
VEg, (z) = Vs, (x) + A 31

By the update mechanism of Orthant Step in Algorithm [3] the next iterate x4 is
computed by the following
{l‘k — akvﬁ’gk (mk) if xp, — O‘kVFBk (.I‘k) > 0,
Ti+1 =

32
0 otherwise (32)

Combining with (3T) and Zx+1 = zx — o Vs, (), (B2) is equivalent to

:E L%kJrl —apX if ﬁk+1 > g,
k41 = .
0 otherwise,

which completes the proof.

Finally, we remark here that the projection region of Orthant Step in OBProx-SG is
a superset of that of Prox-SG and Prox-SVRG, where the trial iterate of Prox-SVRG is
computed under SVRG [8]]. RDA possesses a different projection region as [—)\, A] to
produce zero elements if the dual averaging inhabits [[7]].

B Convergence Analysis Proofs

In Appendix-B, we present the proofs of the theorems stated in Section [3] We first
describe the sufficient decrease properties of Prox-SG Step and Orthant Step in Sec-
tion[B.T] We then derive the main convergence results for convex settings in Section[B.2]
We establish an non-asymptotic upper bound of Np for OBProx-SG+ in Section
Finally, we generalize our conclusions in non-convex scenario in Section



18 No Author Given

B.1 Sufficient decrease by Prox-SG Step and Orthant Step

The lemma below is well known for proximal operator under our notations. We include
this proof for completeness.

Lemma 1. Suppose k € Sp, line[3|of Algorithm]yields that xy+1 = xr—kGa, B, (Tk),
where
Gan.Bi (xk) € VB, (zk) + A0||wpsal]1- (33)

And the objective value Fp, satisfies

2
oL

Fp, (vh11) < Fp, (7x) — (ak - 2) Gaw 81 ()13 - (34)

Proof. 1t follows from the line (3)) in Algorithm [2)and the definitions of proximal oper-
ator that

. 1
Tpr = argmin o o = (2 = Vi (@)l + Al

TE€R”™ . i (35)
= argmin Vfp, (z4)" (2 = ) + Azl + 5— o = axll;
z€Rn Qg
By the optimal condition, we have
1
0 S ;k(zk+1 *lEk)‘i’Vka(l'k)+)\8H,’L’k+1H1 (36)
Since xp4+1 = T — axGa, B, (), We have
0 € —Gay.8, (Tk) + Vi, (zk) + A0 [[Th sl (37)
which implies that
Gaw.Bi (k) € Vi, (2r) + A0 |zl - (38)
And thus there exists some v € O ||x41||; such that
Go By (T1) = VB, (2k) + M. (39)
By Lipschitz continuity of Vfj, and convexity of ||-||,, we have
fBi (k1) = [, (Th — arGay 5, (1))
%L 40)

< fr(@r) — V5, (1) G 5, (1) + 2 (G 5, () |2

2
and
Mzgtally, = AMlze — axGay 5, (21)]l;
< Mll, + M (@r — arGay 8, (T8) — 1) (41)

= Mlzklly = ardo” Ga, 5, (21).
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Hence, by (39), (@0) and (@T)), the objective Fis, (x11) satisfies

Fg, (2r41) = fB, (Tht1) + Azpp |l

a?L
<f8.(@K) — VB, (k)" Gay 5, (z1) + % 1Ga 5 (26) 15 + Mk, — ax AT Gy 5, (1)
T a%L 2
=Ip, (zr) — ax(Vfp, (Tk) + M)" Ga, B, (Tk) + 5 Gak.Bi (x5
2L
s (1) ~ (0 = 5 ) G0 a0

which completes the proof.

We then establish a useful lemma for Orthant Step.

Lemma 2. Suppose k € So, line 3] of Algorithm [3] yields that w11 = x + oudy,
where

dr € — (VB (vk) + No, (vk+1)), and (42)
Noy (@rt1) = {v: v (2p41 — 2) > 0,Vz € O} (43)

is the normal cone of the orthant face Oy, at xy1. Moreover, the objective value Fp,
satisfies

ail
Fis (av10) < Fi (o) — (= %55 ) . @)

Proof. Using the fact that Euclidean projection on a set O is a proximal mapping of
indicator function I, (x), we have

T1 = Projo, (v — ar Vs, (21))

1 2
= 1 _— — — I
argmin 5 - |z — (zr — ax Vs, (zK)l5 + Lo, (2) @5)

— argmin Vi, (00)7 (0 - 22) + lo, (2) + 5
reR™ Qg

2
[l — @l -

It follows Oy, is convex that Ip, (z) is convex. Combining with optimal condition, we
have

1
0e ;k(xk+1 — ) + Vfa, (zx) + 0lo, (Yt41)- (46)

Let x3+1 = z + agdg, and utilizing the fact that the subdifferential of the indicator
function Io, (z) at x4 is the normal cone No, (zx+1) [I, Example 5.4.1], we obtain

0 € di. + Vfs, (zr) + No, (2r41), (47

which implies that
d, € = (Vfs, (x1) + No, (Tr41)) - (48)
And thus there exists some v € No, (zx+1) such that

d, = —(Vka (l‘k) + 1)). 49)
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Let us define an auxiliary function ¢(x) : R™ — R as
&(x) = Fp, (z) + To, (2). (50)

Note that ng is differentiable by the definition. It follows the line [3| of Algorithm
that zy, 411 € Ok. Combining with definition of indicator function I, , we have

D(xx) = F, (v1) + To, (v1) = Fp, (z1)

. . (51)
P(zr11) = Fi, (wr11) + Loy (Th41) = F, (Th41)-
Similar to the proof of Lemmal[T] we have
(p(ﬂﬁk+1) = @(l’k + akdk)
=Fp, (vx + awdi) + Io, (xx + andy)
~ ~ ail
<Fpg, (vx) + ax VFp, (vx) " di + % ||dk||§ + Io, (z1) + agv’ dy, (52)
ail ~ T
=B(wx) + 5= el + e (Vs (@x) + ) d
a2L 2
=(w) + =5 lldill; = clldel3
where the last equality follows from {#9). Therefore, we obtain
ail
Porn) < @) — (an = %) [l 53)

Finally, it follows (9), (51 and (53) that
> ajL 2
Fp (2r+1) = Fp, (2h41) = P(2n41) < Plax) — | an — == ) lldill2

~ all all
i (o1) (0~ %55 ) 1§ = P o) — (o = 255 )

which completes the proof.

According to Lemma [T] and Lemma [2] the objective value on a mini-batch tends
to achieve a sufficient decrease in both Prox-SG Step and Orthant Step given ay, is
small enough. By taking the expectation on both sides, we obtain the following result
characterizing the sufficient decrease from F'(xy) to E [F(2k41)].

Corollary 2. For iteration k, we have
(i) ifk € Sp, then

2
BIF ()] < Fon) ~ (00— SE) B (lG0 s @] 69
(ii) ifk € So, then
P ()] < Flow) - (- 2 ) E[laufE). 55)

Corollary [2] shows that the bound of F' depends on step size «;, and norm of search
direction. It further indicates that both Orthant Step and Prox-SG Step can make some
progress to optimality with proper selection of a.
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B.2  Proof of Theorem I for convex settings

In order to establish our main convergence results for convex settings, we require the
following two lemmas. The first one shows the continuity of the subdifferential for
convex functions from [6, Theorem 3].

Lemma 3. Let h : R™ — R be convex and let {x)} converges to some x* € R™. Let
Sk € Oh(xy) for all k. Then, the sequence {sy,} is bounded and every of its limit points
is a subgradient of h at T*.

The second lemma shows that the vectors G, 5, (z1) and dj, correspond to a valid
optimality measure for target problem.

Lemma 4. Let S be an infinite set of positive integers such that {xy }res — z*. If one
of the following cases satisfies:

(i) {Gan.B. (k) kespNs — 0. In other words, Prox-SG Step performs infinitely
many times, and the proximal mapping converges to zero.

(ii) {dk}reso ns — 0 and the optimal solution x* lies in Oy for all k € Sp [ S.
In other words, Prox-SG Step has explored orthant face inhabited by the optimal
solution. Then Orthant Step runs infinitely many times on {Ok }res, s> and the
projected mapping converges to zero.

then the z* is an optimal solution to problem (T).

Proof. Suppose caseholds. Then by Lemma we have that for k € Sp (S
g@k;Bk (mk) = Vf(xk) + >\'Uk+17

where vi 1 € O ||Tg 11|, It follows the continuity of Vf , {Ga, 5, (7x)}resr ns — 0
and {xy }res — 2" that there exists v* € R™ such that v* is the unique limit point of
{Uk+1}kesp N s> namely

{vrks1tresrns = V"
Combining with the convexity of |||
||z*];. Overall, we obtain

1> by Lemma |3, v* belongs to sudifferential of

VI(z*)+ A" =0
which means z* is an optimal solution to problem ().

Suppose case holds, then problem (I0) shares the same solution with prob-
lem (I). Then using the similar analysis for case we obtain that z* is the optimal

solution of (T0) and (T).

Now we prove the first case of Theorem [I)in Section[3.1]
Proof of Theorem [Ifi): We know that Algorithm [I] performs an infinite sequence of
iterations. It follows Corollarythat for any £ € Sp | So,

~

EF(zo) — EF(z¢41) = ZEF(l’k) — EF(2k+1)
k=0

a2L a2L
> Y (o= ) Bl sl + 3 (o0 - ) Bl

keSo
k<t k<(

(56)
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Combining the assumption that F is bounded below on the level set £ := {x € R™ :

F(x) < Fxo)},

Sp| = oo and letting ¢ — oo, we obtain

il
> (an = EE ) Blo, 5. (00 < o
keSp

Suppose case (T6) holds, i.e. 0 < o, = a < %, then

1 2
by Z E ||go<k,Bk(xk)||2 < 0.
keESP

Consequently, we have

. 2 .
kléglp E ”goék,Bk, (wk)”Q =0, kléglp E[gak,Bk (‘rk)} =0

(57)

(58)

By the compactness of level set £, the infinite sequence {xj} has a subsequence that
converges to a point in £ in expectation. Given this fact, it follows from Lemma []
and (58) that the limit point is one optimal solution z* of (I)). Now following the conti-

nuity of F', the monotonically decrease of F' in expectation, we have that

lim E[F(zx)] = F(z*).

k—o0

If the uniqueness of x* is given, we then have that

lim E[z] = 2*.
k—o0

Suppose case (I7) holds, rewrite (79) as

2
2 apL 2
Z kK (|G, B, (xk)HQ - Z %E 1G5 (xk)HQ <00

keSp keSp
It follows Assumption [T} (T7) and Lemma 3] that
Q2L 2
Z %E ||gak76k(xk)||2 < 00,

keSp

which implies that

Z kK (|G, B, (xk)”; < 0.

keSp

combining with a, > 0, Y7 ) ax = 00, we obtain
. 2
lim inf B [|Ga 5, (@), = 0.

(64) indicates that there exists a subsequence S’ in Sp such that

. 2
Jim E (G, 5, (a4) 5 = 0.

(39)

(60)

(61)

(62)

(63)

(64)

(65)
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Similar to the proof of constant size case, we have that limyeoo E[F (z1)] = F(x4),
and limy e, E[zg] = 2. if optimal solution is unique as claimed.

Next, we start to consider the case (ii) of Theoremm Toward that end, we at first
show if xj is sufficiently close to z*, the optimal solution inhabits the orthant face Oy,
constructed by xy.

Lemma 5. If ||z, — z*||, < 6, then for each i € T7°(z*),
sign ([zx]i) = sign ([z7];). (66)

Consequently I°(z,) C Z°(z*), and the optimal solution x* lies in the Orthant face of
xy, defined as (I), i.e., x* € Oy.

Proof. To obtain the conclusion, observe that since ||z — z*[|, < 0 by assumption, it
follows from the definition of § as (T3)) that
forany i € T™(2*) : [als = [anls — (2 + [&°]s < |l — 2"]a] — 26
<l|lzg —2"||; —20 <6 —20=—-0 <O0.
forany i € ZV(2*) : [xg)s = [wa]i — [2*]; + [2*]i > [z — )5 + 26
> —|log —2 ||, +20 < —=0+20=6>0.

(67)

Hence, we have that for each i € Z7°(z*), sign ([xx);) = sign ([*];). By the definition
O, the z* inhabits O, namely z* € Oj.

Once xj is close enough to =, if the step size «y is properly selected, then the
yielded zero elements by employing one Orthant Step belongs to Z°(x*) as stated in
Lemmal6l

Lemma 6. If ||z, — z*||, < 6, k € So, and a4, € (0,20 /M), then we have that
I%(wps1) C I0(2%). (68)

Proof. To prove it by contradiction, suppose there exists some i € Z°(x,41) such that
i ¢ I°(x*). Since i € I°(zy41), i ¢ I°(2*), and Z°(x) C Z°(2*) by Lemmal5] then
i ¢ I°(xy), consequently sign ([zx11];) # sign ([x1]:),

[Trr1)ilze)i = [2x — 0k VEB, (21)]i[ze]s <0 (69)

On the other hand, combining (69) with (T3) and the assumption oy, € (0,25/M ), we
have that

[Zhi1lilzn]i = ok — axVEB, (x1))i[zr]s
= [[[exlill® = xVIFs, (zx)]i[zx);
> 46% — | [VEB, (z1)]i] - |[zk]i] (70)
> 46% — oy || Vi (1)

|l

> 46% — ap M 25 > 0,

contradicting (69) which completes the proof.
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We then reveal that the Euclidean distance between next iterate x4; computed by
Orthant Step and the optimal solution 2* does not increase under sufficiently small step
size o in Lemmal[7]

Lemma 7. If ||z — 2*||, < 6, k € So, and oy, € (0, min{2/L,26/M?}), then

s — 2y < 6. @)

Proof. For simplicity, let 79, | as Z°(xj41) and I,f_gl as Z70(xp41).

2 2
*1(12 _ — 2 - * i
|2kt — 2|2 _’ [xk apVFg, (z1) —x ]I;iol . + H[f ]12+1 2
* 2 a ! *
- Huk - ]I;f+01 2 — 2ay, [VFBk (xk)} ff] [xk - ]I?:il (72)
] 2 2
+ap [VFB’“ (xk)}zﬁl , H[JJ*]I,3+1 2

It follows the convexity of F, (x) and its Lipschitz continuous gradient that

[Vﬁgk (zx) — VFBk (x*)};o [T — 2% 0 > % H [VFB,C (zg) — VFBk (x*)} i

70, k+1 I,irol 9
(73)
Combining with the optimal condition and z* € Oy, can be rewritten as
- T . 1 . 2
[VF, (xk)}z;;}l lox =2l 2 7 H [VF (o) 2 ||, 79
Additionally, it follows the assumption of this lemma and Lemma [6] that
i 2
|21z |, = (75)
By the above (74) and (73), (72)) can be further simplified as
2 2a ~ 2
* (12 * k 2
lzis =l < |lox =Tz, |, - (L B “k) H [P ) zoll, 70
Now it follows 0 < o, < 2/L that
* 12 * 2 *12 _ (2
ks =2y < ||lzx = 27] g0 || < llow =27z =6 an

which completes the proof.

The Lemma [§] below shows if current iterate x, locates closely enough to z* and
step size oy, is properly selected, then x* inhabits all subsequently Orthant faces.
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Lemma 8. If ||z —2*||, <6, {k: k> K, ke Z"} C Spand oy, € (0,min{2/L,25/M}),
then x* € Oy, forany k > K.

Proof. Tt follows Lemma[5]and the assumption of this lemma that 2* € O . Combining
with a; € (0, min{2/L,25/M}) and Lemma([7] that the assumption of Lemma [3]still
holds for K + 1, hence 2* € Ok 1. Therefore, we can iteratively employing Lemma 3]
andto show that z* € Oy holds forany k € {k : k > K,k € Z*} C So.

We now establish the proof for the second case of Theorem ]
Proof of Theorem [1[ii): We know that Algorithm ] performs an infinite sequence of
iterations. It follows Corollary 2|that for any ¢ € Sp | So,

14
EF(20) — EF (z¢11) = » EF(w) — EF (241)

k=0
78)
o?L 2 o?L 2 (
= (ak—g)Engak,Bk(xmﬁ ) (ak— ;)sz
keSp keESo
k<t k<l

Combining the assumption that F is bounded below on the level set £ = {x € R™ :
F(z) < F(x0)}, |So| = oo and letting £ — oo, we obtain

all
> (ak - ;) E|di 5 < o0 (79
keESo

Similarly to the proof of Theorem [I[f] that under the step size setting (T6) and (7)), there
exists a subsequence of S € Sy such that

lim E 2 _
lim E{|dy||; = 0 (80)

It follows ay, € (0, min{2/L,25/M}), Lemma|8|and Lemma{(ii)|that lim_, o E[F'(z},)] =
F* and limy,_, o E[z] = 2* if optimal solution is unique.
B.3 Proof of Theorem 2]

We first show that the general PL condition (21)) implies a different Proximal PL condi-
tion in [4], i.e., there exists a ;> 0 such that

Djpop, (x,n) = 2u(F(x) — F*) (81)
where

_ : Ty — Ty — 212 _
Dayey, (m) = =20 min {VF @) (g =) + 3 ly = o3 + Myl = Al
(82)
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Lemma 9. Ifthere exists a i > 0 such that for all x € R"
1Ga (@)1l > 2u(F (x) — F*), (83)
then for all z € R", the Dy (v, 1/«) satisfies

Dy, (@, 1/a) > 2u(F(x) — F7). (84)

Proof. Let§ = argmin, { Vf(2)"(y — #) + 2 ly — o3 + Allyll, — Az, }. then

0€ V(@) + = (5~ ) + 20l
§ = € ~a(Vf() + 2 ill).

(85)

It follows the definition of Dy (7, 1/a) that

Dy, (@, 1/a)
-9 1
2@ 0= )+ o = ol + Ml - Ml |
_9 1
&2 - aw @) (91 + 201l + 5?1970+ 0l + Al — el

=2Vf x)T(Vf( )+ 20 [9,) +2/a(N 2], = Allyll,) = [V () + 20 131, ]1”

=2|[(Vf(z) + AaHyll W =119/ (@) + 20 1311, 11*

(
=1V (@) + 20 191, II”
(86)

On the other hand, the gradient mapping G, (z) exactly belongs to Vf(z) + A ||9]|,-
Consequently, the following inequality holds

2 *
Dajp, (@, 1/a) = [|Ga(@)lly = 2u(F(x) — F7) (87)
for any x € R™ by the assumption of this lemma, which completes the proof.

To distinguish these two different PL conditions, we refer the PL condition in 1)
as G-PL condition and the one in (81)) as D-PL condition.

The highlight idea of Theorem [2|is now presented as follows: if f(z) is convex
and satisfies PL condition like (21), when the step size « is sufficiently small, and
the size of mini-batch is sufficiently large, there exists an upper bound Np such that
||z — 2*||, < d can be achieved by employing Np Prox-SG Steps with high probabil-
1ty.
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Proof of Theorem 2} At first, since F'(x) satisfies the G-PL condition 1)), it also
satisfies D-PL condition due to Lemma([9} It then follows [4, Appendix G, specifically
D-PL condition implies the Proximal Error Bound that there exists some 21L >v>0

such that

[z = 2%l < v[1Gn(2)ll, (88)
holds for any x € R™ and any n > 0.

For any k < Np, k € Sp, at k-th iteration, let G,, (x) be the full gradient map-
ping at point z, let G,, g, (x) be the mini-batch gradient mapping at point = with
Eg, [Gow.B. (2)|2] = Ga,(x), and let ex(z) be the difference between full gradient
mapping and mini-batch gradient mapping such that

gak,Bk (Z‘) = gak (.Z‘) + e, (89)

with Ep, [ex|zx] = 0 where xj, denotes the starting point at k-th iteration. Notice that
condition on z, G, (x)) is independent with ey,.

Based on Lemmal[I] given z;, and a random sampled mini-batch By, the expected
Euclidean distance square between next iterate x1 and the solution z* given xj, can
be computed as follows

Es, [|z5s1 — 273 |24]
=Eg, [|zx — axGay,5, (21) — 2* |3 &)
=Eg, [|zx — 2" |13 |2x] — 200 (2 — &) Es, [Ga, 5, (21)|2x] + 0FEp, [||Ga 5, (k)15 4]
= llex — %[5 — 200 (zk — &) Gy, (21) + OF{EB, [Gay. 5, (i) xall* + Es, [llex (@) [|* 2]}
(@x) + 3 {1 Ga (@)1 + Es, [len(e) | 4]

= |lzr — rGay (zk) — 27|15 + 07 Es, [|lex(zx)|* 2]

=llzx — 2| = 20k (zx — &%) Ga,

(90)

where the first term ||z — agGa, () — =* ||§ is the distance square obtained via start-
ing at x;, followed by doing a proximal full gradient descent step, and the second term
aiEg, [|lex(zx) ||* |1] is the random noise generated from the kth mini-batch stochas-
tic gradient descent step combining with step size a.

To upper bound the first term, notice that for a proximal full gradient descent, it
follows Proximal Error Bound (88)), cvx, € (0,1/L] and [3, Theorem 3.2] that

1 N
ot = a1 o)~ w° I < (1= 5 ) CF @) - F) o)

where (' is a constant as . Based on [4, Theorem 4], since I’ has

2

L(1—/1—(2L~)~1)2
L-Lipschitz continuous gradient and satisfies G-PL condition, if we use a constant step
size a, = a < i, then we obtain a linear convergence rate up to a solution level that

is proportional to «,
LD%a
dp

E[F(zy) — F*] < (1 = 2ua)* (F(zo) — F*) + 92)
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where D is the bound of norm of gradient mapping estimation which is well defined by
Assumption [T]and (T).

To upper bound the second term, since the norm of gradient mapping is bounded,
let 3; be a one-point mini-batch, then for any z, there exists a constant ¢ > 0 such that

0% 2 Eg it | (G 5 (®) = Gy (7)) 93)

i.e., o2 is an upper bound for the noise generated from a one-point mini-batch stochastic

proximal gradient descent step. By computational, we have

E 2 o
By ||€k|| Yk S@, 94

which gives an upper bound propotion to ﬁ.

Therefore, combining (90), (92)), and (94)
2
Elllzrsr — 2"l

=E[llw, — Ga (x1) = 2°[I3] + ZEs, [llex ()| 4] 95)

1 A & . LD o?
<(1-— - - il I
< (1 2L’y) C {(1 2pa)” (F(zo) — F*) + m + Bl

Now for any 1 > 7 > 0, if the step size « is sufficient small and satisfies

S8yutd?
41— (96)
(2Ly — 1)CD?
then R
8yurd? — (2Ly —1)CD*a > 0 97)
Moreover, if mini-batch size is sufficiently large and satisfies
Sypo?
By| > TR . (98)
8yurd? — (2Ly — 1)C D3«
then ) )
o 1 ~ LD«
T§2<1>C > 0. (99)
|B| 2Ly Ap

Thus, there exist some well-defined £ > 0 such that

1 - o? 1 . LD«
11— — | C(—2pa)k (F(zg) — F*) <76 — —— — (1 - —
( 2L7) U= 2na) (Flao) = 1) 707 = 1] ( 2L7>C Ap
(100)
Notice that the right hand side of (T00) is a polynomial of 762,1/|Bx| and «, and
(1 - ﬁ) C on the left hand side of (TO0) is a constant given F. Thus to let (TOD)

hold, k should satisfy

(101)

k> K= Fog (poly(70”, 1/|By|, @)/ (F(zo) — F*))w

log (1 — 2u«)
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where poly (762, 1/|Bg|, ) represents a polynomial of 762, 1/|By| and a.

Now, it follows (©3) that if (96)), (98) and (I0T)) hold, then
El|aks1 —*|l3] < 6%,
now combine with Markov inequality that

Efl|zp41 — 23]

P (llonss — 27 2 %) < =L

<T

29

(102)

(103)

which indicates the event |21 — 2*||3 < 62 holds with probability at least 1 — 7 for

any k > K.

B.4 Proof of Theorem 3|for nonconvex settings

In this Appendix, we present the proofs of the convergence theorem for nonconvex set-

tings.

Proof of Theorem [3[(i): Similar to proof of Theorem I|i), we have that

oL
> (an = EE ) Blo, 5. (00 < o
keSp
Suppose case (T6) holds, i.e. 0 < o, = a < %, then

1 2
by Z E ||gak,Bk($k-)||2 < 0.
keSp

Consequently, we have

. 2 .
klég.np E ”gak,Bk (xk)HQ =0, kléglp E[gak,Bk (xk)] =0

Suppose case (I7) holds, rewrite (79) as

2
2 apL 2
Z a,E ||gak~,3k (-Tk)HQ - Z %E ”gak,Bk (xk)Hz <00

keSp keSp

It follows Assumption[I} (I7) and Lemma 3] that

a2l
S R G, (1)} < 0,

keSp

which implies that

> R[G5, (wr)]5 < 0.

keSp

combining with a; > 0, Y77 ) ap = 00, we obtain

. 2
liminf B [|Go,, 5, (z2)ll; =0,

(104)

(105)

(106)

(107)

(108)

(109)
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which completes the proof.

Now we establish the proof of Theorem [3|ii) for OBProx-SG+. Remark here that
although f(x) is nonconvex R", we assume f(z) is convex on a subset X := {z :
|z — &||, < &} for some stationary point Z.

Proof of Theorem [3[ii): Similarly to proof of Theorem [I[ii), we have that under the
step size setting and (T7), there exists a subsequence of S € S such that

2

li EH F H — 11
kler% VFg, (x)) , 0 (110)

Atfirst, it follows f () is convex on X := {z : ||z — &||, < 8} that Lemma, 5] [6] 78]
are still applicable for &. Hence, combining with oy, < min{2/L,25/M}, the sta-
tionary point Z of problem (T)) is also one stationary point of subproblem () for any
k € So. Therefore, by proof on contradiction, (110) indicates that for the subsequence
of S € Sp

. 2
IICIEI?SE”gak,Bk(xk)HQ =0. (111)

C Switching Mechanism Comparison

In this section, we dive into the performance of OBProx-SG under different switching
mechanisms to numerically demonstrate the superiority of the control mechanism under
Np and N presented in the main body of this paper.

As a competitor, we design another switching mechanism stated as Algorithm 5] by
making use of the optimality measure inspired by the multi-routine deterministic opti-
mization algorithms [2L5]]. Particularly, at kth iteration, we at first compute a minimum-
norm subgradient g(z) defined as follows

[Vf(x)]; + A if [z]; > 0or ([z]; = 0and [Vf(z)]; + A < 0)
l9(2)); = S [Vf(2)]s = X if[z]; <O0or ([z); =0and [Vf(z)]; — A >0) (112)
0 otherwise

on xy, or its estimator on a subset of full data points B, see line [2[ in Algorithm
Then we compute the norm of subvector in g; () corresponding to the indices of
zero entries on x, and the norm of subvector in g4(xy) for the non-zero entries. If
H [95(@k)] 20 (21) H2 > H [gg(xk)]:[#O(mk)’ ,» then the progress by freeing zero variables
on xj to non-zero may produce more progress to the optimality. Since the Prox-SG
Step mainly serves as predicting the supports (non-zero entries) of the solution, then
employing Prox-SG Step at current iteration is a reasonable choice. Otherwise, we se-
lect Orthant Step to promote the sparsity.

Next, we test OBProx-SG under the switching mechanism as Algorithm [5] on the
convex experiments in Section 4.1, where at each iteration B is constructed by uni-
formly sampling 5% data points. The numerical results are provided in Table [/| for
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Algorithm 5 Switching Mechanism by Optimality Measure.

: Input: k, xy, B.
: Compute the minimum-norm subgradient (T12) on B, denoted as 95(r).
it [l (o0 0o [, > [958 000, ], then
Return Prox-SG step is selected.
else
Return Orthant step is selected.

final objective function values (F'/f) and Table [8| for density of solutions. We ob-
serve that OBProx-SG under different switching mechanisms can achieve quite compet-
itive objective function values F'/f on these convex problems. However, it is apparent
that OBProx-SG under switching mechanism by optimality measure computes solu-
tions with obviously lower sparsity (higer density) comparing with OBProx-SG under
switching mechanism by Np and N. It is because the randomness of B may not guar-
antee the OBProx-SG ends with Orthant Step but Prox-SG Step which is highly likely
to deteriorate the progress of sparsity exploration. Therefore due to additionally compu-
tational cost of Algorithm[5]and the unreliability of sparsity promotion, we recommend
to use Algorithm[]as the default switch.

Table 7: Objective function values F'/ f on convex problems.

Switch
Problems Algorithm 4 Algorithm 4 Algorithm 5
Np=5,No=5 Np=15,N(9=OO

a%a 0.327/0.326 0.329/0.328 0.331/0.329
higgs 0.326 / 0.326 0.326 / 0.326 0.326/ 0.326
ijennl 0.198/0.197 0.198/0.197 0.199/0.198
kdda 0.102/0.102 0.102/0.102 0.102/0.102
news20 0.413/ 0.355 0.413/ 0.355 0.413/0.355
real-sim 0.164 / 0.125 0.164 / 0.125 0.165/0.126
revl 0.242/0.179 0.242/0.179 0.242/0.179
susy 0.376 / 0.376 0.376 / 0.376 0.376 / 0.376
url_combined  0.050/0.049 0.047 / 0.046 0.090/0.090
w8a 0.052/0.048 0.052/0.048 0.052/0.048

best 9 9 6

second best 1 1 0

sum 10 10 6
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Table 8: Density of solutions on convex problems.

Switch
Problems Algorithm 4 Algorithm 4 .
Np=5No=5 Np =15 No = oo Algorithm 5

a%a 62.10 59.68 59.68
higgs 70.69 70.69 89.66
ijennl 56.52 56.52 56.52
kdda 0.08 0.06 0.34
news20 0.20 0.19 2.22
real-sim 22.44 22.15 21.52
revl 4.36 4.33 10.42
susy 73.68 73.68 94.74
url_combined 3.26 3.00 491
w8a 78.03 74.75 71.10

best 3 8 4

second best 4 2 0

sum 7 10 4
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