
Orthant Based Proximal Stochastic Gradient Method for `1-Regularized Optimization 17

A Projection Region

In Section 2, we compare the projection regions of different algorithms in Figure 2,
and conclude that the orthant step of OBProx-SG enjoys a much larger projection to
map a trial iterate to zero so that it is a more aggressive sparsity promotion mechanism
than the others. Hence the solutions computed by OBProx-SG tends to be more sparse.
In this Appendix, we present the deduction of the projection region for Orthant Step
in 1-dimensional example. The 1-dimensional result can be easily extended to higher-
dimensional space.

Proposition 1. If k ∈ SO, 0 < xk ∈ R1, the Orthant Step of OBProx-SG yields next
iterate xk+1 based on the trial iterate x̂k+1 = xk − αk∇fBk

(xk) as follows

xk+1 =

{
x̂k+1 − αkλ if x̂k+1 > αkλ,

0 otherwise.
(29)

Therefore, the projection region of Orthant Step is (−∞, αkλ] to map x̂k+1 to zero if
xk > 0. Similarly, the projection region as [−αkλ,∞) is attained if xk < 0.

Proof. It follows the definition of F̃ as (9) and xk > 0 that

F̃Bk
(x) = fBk

(x) + λx, (30)

∇F̃Bk
(x) = ∇fBk

(x) + λ (31)

By the update mechanism of Orthant Step in Algorithm 3, the next iterate xk+1 is
computed by the following

xk+1 =

{
xk − αk∇F̃Bk

(xk) if xk − αk∇F̃Bk
(xk) > 0,

0 otherwise
(32)

Combining with (31) and x̂k+1 = xk − αk∇fBk
(xk), (32) is equivalent to

xk+1 =

{
x̂k+1 − αkλ if x̂k+1 > αkλ,

0 otherwise,

which completes the proof.

Finally, we remark here that the projection region of Orthant Step in OBProx-SG is
a superset of that of Prox-SG and Prox-SVRG, where the trial iterate of Prox-SVRG is
computed under SVRG [8]. RDA possesses a different projection region as [−λ, λ] to
produce zero elements if the dual averaging inhabits [7].

B Convergence Analysis Proofs

In Appendix-B, we present the proofs of the theorems stated in Section 3. We first
describe the sufficient decrease properties of Prox-SG Step and Orthant Step in Sec-
tion B.1. We then derive the main convergence results for convex settings in Section B.2.
We establish an non-asymptotic upper bound of NP for OBProx-SG+ in Section B.3.
Finally, we generalize our conclusions in non-convex scenario in Section B.4.
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B.1 Sufficient decrease by Prox-SG Step and Orthant Step

The lemma below is well known for proximal operator under our notations. We include
this proof for completeness.

Lemma 1. Suppose k ∈ SP , line 3 of Algorithm 2 yields that xk+1 = xk−αkGαk,Bk
(xk),

where
Gαk,Bk

(xk) ∈ ∇fBk
(xk) + λ∂‖xk+1‖1. (33)

And the objective value FBk
satisfies

FBk
(xk+1) ≤ FBk

(xk)−
(
αk −

α2
kL

2

)
‖Gαk,Bk

(xk)‖22 . (34)

Proof. It follows from the line (3) in Algorithm 2 and the definitions of proximal oper-
ator that

xk+1 = argmin
x∈Rn

1

2αk
‖x− (xk − αk∇fBk

(xk))‖22 + λ ‖x‖1

= argmin
x∈Rn

∇fBk
(xk)

T (x− xk) + λ ‖x‖1 +
1

2αk
‖x− xk‖22

(35)

By the optimal condition, we have

0 ∈ 1

αk
(xk+1 − xk) +∇fBk

(xk) + λ∂ ‖xk+1‖1 . (36)

Since xk+1 = xk − αkGαk,Bk
(xk), we have

0 ∈ −Gαk,Bk
(xk) +∇fBk

(xk) + λ∂ ‖xk+1‖1 , (37)

which implies that

Gαk,Bk
(xk) ∈ ∇fBk

(xk) + λ∂ ‖xk+1‖1 . (38)

And thus there exists some v ∈ ∂ ‖xk+1‖1 such that

Gαk,Bk
(xk) = ∇fBk

(xk) + λv. (39)

By Lipschitz continuity of∇fBk
and convexity of ‖·‖1, we have

fBk
(xk+1) = fBk

(xk − αkGαk,Bk
(xk))

≤ fBk
(xk)− αk∇fBk

(xk)
TGαk,Bk

(xk) +
α2
kL

2
‖Gαk,Bk

(xk)‖22
(40)

and

λ ‖xk+1‖1 = λ ‖xk − αkGαk,Bk
(xk)‖1

≤ λ ‖xk‖1 + λvT (xk − αkGαk,Bk
(xk)− xk)

= λ ‖xk‖1 − αkλv
TGαk,Bk

(xk).

(41)
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Hence, by (39), (40) and (41), the objective FBk
(xk+1) satisfies

FBk
(xk+1) = fBk

(xk+1) + λ ‖xk+1‖1

≤fBk
(xk)− αk∇fBk

(xk)
TGαk,Bk

(xk) +
α2
kL

2
‖Gαk,Bk

(xk)‖22 + λ ‖xk‖1 − αkλv
TGαk,Bk

(xk)

=FBk
(xk)− αk(∇fBk

(xk) + λv)TGαk,Bk
(xk) +

α2
kL

2
‖Gαk,Bk

(xk)‖22

=FBk
(xk)−

(
αk −

α2
kL

2

)
‖Gαk,Bk

(xk)‖22 ,

which completes the proof.

We then establish a useful lemma for Orthant Step.

Lemma 2. Suppose k ∈ SO, line 3 of Algorithm 3 yields that xk+1 = xk + αkdk,
where

dk ∈ − (∇fBk
(xk) +NOk

(xk+1)) , and (42)

NOk
(xk+1) :=

{
v : vT (xk+1 − x) ≥ 0,∀x ∈ Ok

}
(43)

is the normal cone of the orthant face Ok at xk+1. Moreover, the objective value FBk

satisfies

FBk
(xk+1) ≤ FBk

(xk)−
(
αk −

α2
kL

2

)
‖dk‖22 . (44)

Proof. Using the fact that Euclidean projection on a set Ok is a proximal mapping of
indicator function IOk

(x), we have

xk+1 = ProjOk
(xk − αk∇fBk

(xk))

= argmin
x∈Rn

1

2αk
‖x− (xk − αk∇fBk

(xk))‖22 + IOk
(x)

= argmin
x∈Rn

∇fBk
(xk)

T (x− xk) + IOk
(x) +

1

2αk
‖x− xk‖22 .

(45)

It follows Ok is convex that IOk
(x) is convex. Combining with optimal condition, we

have

0 ∈ 1

αk
(xk+1 − xk) +∇fBk

(xk) + ∂IOk
(yt+1). (46)

Let xk+1 = xk + αkdk, and utilizing the fact that the subdifferential of the indicator
function IOk

(x) at xk+1 is the normal cone NOk
(xk+1) [1, Example 5.4.1], we obtain

0 ∈ dk +∇fBk
(xk) +NOk

(xk+1), (47)

which implies that
dk ∈ − (∇fBk

(xk) +NOk
(xk+1)) . (48)

And thus there exists some v ∈ NOk
(xk+1) such that

dk = −(∇fBk
(xk) + v). (49)
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Let us define an auxiliary function Φ(x) : Rn → R as

Φ(x) := F̃Bk
(x) + IOk

(x). (50)

Note that F̃Bk
is differentiable by the definition. It follows the line 3 of Algorithm 3

that xk, xk+1 ∈ Ok. Combining with definition of indicator function IOk
, we have

Φ(xk) = F̃Bk
(xk) + IOk

(xk) = F̃Bt
(xk)

Φ(xk+1) = F̃Bk
(xk+1) + IOk

(xk+1) = F̃Bk
(xk+1).

(51)

Similar to the proof of Lemma 1, we have

Φ(xk+1) = Φ(xk + αkdk)

=F̃Bk
(xk + αkdk) + IOk

(xk + αkdk)

≤F̃Bk
(xk) + αk∇F̃Bk

(xk)
T dk +

α2
kL

2
‖dk‖22 + IOk

(xk) + αkv
T dk

=Φ(xk) +
α2
kL

2
‖dk‖22 + αk

(
∇F̃Bt(xk) + v

)T
dk

=Φ(xk) +
α2
kL

2
‖dk‖22 − αk‖dk‖

2
2

(52)

where the last equality follows from (49). Therefore, we obtain

Φ(xk+1) ≤ Φ(xk)−
(
αk −

α2
kL

2

)
‖dk‖22. (53)

Finally, it follows (9), (51) and (53) that

FBk
(xk+1) = F̃Bk

(xk+1) = Φ(xk+1) ≤ Φ(xk)−
(
αk −

α2
kL

2

)
‖dk‖22

=F̃Bk
(xk)−

(
αk −

α2
kL

2

)
‖dk‖22 = FBk

(xk)−
(
αk −

α2
kL

2

)
‖dk‖22

which completes the proof.

According to Lemma 1 and Lemma 2, the objective value on a mini-batch tends
to achieve a sufficient decrease in both Prox-SG Step and Orthant Step given αk is
small enough. By taking the expectation on both sides, we obtain the following result
characterizing the sufficient decrease from F (xk) to E [F (xk+1)].

Corollary 2. For iteration k, we have

(i) if k ∈ SP , then

E [F (xk+1)] ≤ F (xk)−
(
αk −

α2
kL

2

)
E
[
‖Gαk,Bk (xk)‖

2
2

]
. (54)

(ii) if k ∈ SO, then

E [F (xk+1)] ≤ F (xk)−
(
αk −

α2
kL

2

)
E
[
‖dk‖22

]
. (55)

Corollary 2 shows that the bound of F depends on step size αk and norm of search
direction. It further indicates that both Orthant Step and Prox-SG Step can make some
progress to optimality with proper selection of αk.
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B.2 Proof of Theorem 1 for convex settings

In order to establish our main convergence results for convex settings, we require the
following two lemmas. The first one shows the continuity of the subdifferential for
convex functions from [6, Theorem 3].

Lemma 3. Let h : Rn → R be convex and let {xk} converges to some x∗ ∈ Rn. Let
sk ∈ ∂h(xk) for all k. Then, the sequence {sk} is bounded and every of its limit points
is a subgradient of h at x∗.

The second lemma shows that the vectors Gαk,Bk
(xk) and dk correspond to a valid

optimality measure for target problem.

Lemma 4. Let S be an infinite set of positive integers such that {xk}k∈S → z∗. If one
of the following cases satisfies:

(i) {Gαk,Bk
(xk)}k∈SP ⋂

S → 0. In other words, Prox-SG Step performs infinitely
many times, and the proximal mapping converges to zero.

(ii) {dk}k∈SO ⋂
S → 0 and the optimal solution x∗ lies in Ok for all k ∈ SO

⋂
S.

In other words, Prox-SG Step has explored orthant face inhabited by the optimal
solution. Then Orthant Step runs infinitely many times on {Ok}k∈SO ⋂

S , and the
projected mapping converges to zero.

then the z∗ is an optimal solution to problem (1).

Proof. Suppose case (i) holds. Then by Lemma 1, we have that for k ∈ SP
⋂
S

Gαk,Bk
(xk) = ∇f(xk) + λvk+1,

where vk+1 ∈ ∂ ‖xk+1‖1. It follows the continuity of∇f , {Gαk,Bk
(xk)}k∈SP ⋂

S → 0
and {xk}k∈S → z∗ that there exists v∗ ∈ Rn such that v∗ is the unique limit point of
{vk+1}k∈SP ⋂

S , namely
{vk+1}k∈SP ⋂

S → v∗.

Combining with the convexity of ‖·‖1, by Lemma 3, v∗ belongs to sudifferential of
‖z∗‖1. Overall, we obtain

∇f(z∗) + λv∗ = 0

which means z∗ is an optimal solution to problem (1).
Suppose case (ii) holds, then problem (10) shares the same solution with prob-

lem (1). Then using the similar analysis for case (i), we obtain that z∗ is the optimal
solution of (10) and (1).

Now we prove the first case of Theorem 1 in Section 3.1.
Proof of Theorem 1(i): We know that Algorithm 1 performs an infinite sequence of
iterations. It follows Corollary 2 that for any ` ∈ SP

⋃
SO,

EF (x0)− EF (x`+1) =
∑̀
k=0

EF (xk)− EF (xk+1)

≥
∑
k∈SP
k≤`

(
αk −

α2
kL

2

)
E ‖Gαk,Bk

(xk)‖22 +
∑
k∈SO
k≤`

(
αk −

α2
kL

2

)
E ‖dk‖22

(56)
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Combining the assumption that F is bounded below on the level set L := {x ∈ Rn :
F (x) ≤ F (x0)}, |SP | =∞ and letting `→∞, we obtain∑

k∈SP

(
αk −

α2
kL

2

)
E ‖Gαk,Bk

(xk)‖22 <∞ (57)

Suppose case (16) holds, i.e. 0 < αk ≡ α ≤ 1
L , then

1

2L

∑
k∈SP

E ‖Gαk,Bk
(xk)‖22 <∞.

Consequently, we have

lim
k∈SP

E ‖Gαk,Bk
(xk)‖22 = 0 , lim

k∈SP
E[Gαk,Bk

(xk)] = 0 (58)

By the compactness of level set L, the infinite sequence {xk} has a subsequence that
converges to a point in L in expectation. Given this fact, it follows from Lemma 4
and (58) that the limit point is one optimal solution x∗ of (1). Now following the conti-
nuity of F , the monotonically decrease of F in expectation, we have that

lim
k→∞

E [F (xk)] = F (x∗). (59)

If the uniqueness of x∗ is given, we then have that

lim
k→∞

E [xk] = x∗. (60)

Suppose case (17) holds, rewrite (79) as∑
k∈SP

αkE ‖Gαk,Bk
(xk)‖22 −

∑
k∈SP

α2
kL

2
E ‖Gαk,Bk

(xk)‖22 <∞ (61)

It follows Assumption 1, (17) and Lemma 3 that∑
k∈SP

α2
kL

2
E ‖Gαk,Bk

(xk)‖22 <∞, (62)

which implies that ∑
k∈SP

αkE ‖Gαk,Bk
(xk)‖22 <∞. (63)

combining with αk > 0,
∑∞
k=0 αk =∞, we obtain

lim inf
k∈SP

E ‖Gαk,Bk
(xk)‖22 = 0. (64)

(64) indicates that there exists a subsequence S ′ in SP such that

lim
k∈S′

E ‖Gαk,Bk
(xk)‖22 = 0. (65)
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Similar to the proof of constant size case, we have that limk∈∞ E[F (xk)] = F (x∗),
and limk∈∞ E[xk] = x∗ if optimal solution is unique as claimed.

Next, we start to consider the case (ii) of Theorem 1. Toward that end, we at first
show if xk is sufficiently close to x∗, the optimal solution inhabits the orthant face Ok
constructed by xk.

Lemma 5. If ‖xk − x∗‖2 ≤ δ, then for each i ∈ I 6=0(x∗),

sign ([xk]i) = sign ([x∗]i). (66)

Consequently I0(xk) ⊆ I0(x∗), and the optimal solution x∗ lies in the Orthant face of
xk defined as (7), i.e., x∗ ∈ Ok.

Proof. To obtain the conclusion, observe that since ‖xk − x∗‖2 ≤ δ by assumption, it
follows from the definition of δ as (15) that

for any i ∈ I−(x∗) : [xk]i = [xk]i − [x∗]i + [x∗]i ≤ |[xk − x∗]i| − 2δ

≤ ‖xk − x∗‖2 − 2δ ≤ δ − 2δ = −δ < 0.

for any i ∈ I+(x∗) : [xk]i = [xk]i − [x∗]i + [x∗]i ≥ −|[xk − x∗]i|+ 2δ

≥ −‖xk − x∗‖2 + 2δ ≤ −δ + 2δ = δ > 0.

(67)

Hence, we have that for each i ∈ I 6=0(x∗), sign ([xk]i) = sign ([x∗]i). By the definition
Ok, the x∗ inhabits Ok, namely x∗ ∈ Ok.

Once xk is close enough to x∗, if the step size αk is properly selected, then the
yielded zero elements by employing one Orthant Step belongs to I0(x∗) as stated in
Lemma 6.

Lemma 6. If ‖xk − x∗‖2 ≤ δ, k ∈ SO, and αk ∈ (0, 2δ/M), then we have that

I0(xk+1) ⊆ I0(x∗). (68)

Proof. To prove it by contradiction, suppose there exists some i ∈ I0(xk+1) such that
i /∈ I0(x∗). Since i ∈ I0(xk+1), i /∈ I0(x∗), and I0(xk) ⊆ I0(x∗) by Lemma 5, then
i /∈ I0(xk), consequently sign ([xk+1]i) 6= sign ([xk1]i),

[xk+1]i[xk]i = [xk − αk∇F̃Bk
(xk)]i[xk]i ≤ 0 (69)

On the other hand, combining (69) with (15) and the assumption αk ∈ (0, 2δ/M), we
have that

[xk+1]i[xk]i = [xk − αk∇F̃Bk
(xk)]i[xk]i

= ‖[xk]i‖2 − αk∇[F̃Bk
(xk)]i[xk]i

≥ 4δ2 − αk|[∇F̃Bk
(xk)]i| · |[xk]i|

≥ 4δ2 − αk
∥∥∥∇F̃Bk

(xk)
∥∥∥
2
|[xk]i|

≥ 4δ2 − αkM2δ > 0,

(70)

contradicting (69) which completes the proof.
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We then reveal that the Euclidean distance between next iterate xk+1 computed by
Orthant Step and the optimal solution x∗ does not increase under sufficiently small step
size αk in Lemma 7.

Lemma 7. If ‖xk − x∗‖2 ≤ δ, k ∈ SO, and αk ∈ (0,min{2/L, 2δ/M}), then

‖xk+1 − x∗‖2 ≤ δ. (71)

Proof. For simplicity, let I0k+1 as I0(xk+1) and I 6=0
k+1 as I 6=0(xk+1).

‖xk+1 − x∗‖22 =

∥∥∥∥[xk − αk∇F̃Bk
(xk)− x∗

]
I 6=0
k+1

∥∥∥∥2
2

+
∥∥∥[x∗]I0k+1

∥∥∥2
2

=
∥∥∥[xk − x∗]I 6=0

k+1

∥∥∥2
2
− 2αk

[
∇F̃Bk

(xk)
]T
I 6=0
k+1

[xk − x∗]I 6=0
k+1

+ α2
k

∥∥∥∥[∇F̃Bk
(xk)

]
I 6=0
k+1

∥∥∥∥2
2

+
∥∥∥[x∗]I0k+1

∥∥∥2
2

(72)

It follows the convexity of FBk
(x) and its Lipschitz continuous gradient that

[
∇F̃Bk

(xk)−∇F̃Bk
(x∗)

]T
I 6=0
k+1

[xk − x∗]I 6=0
k+1
≥ 1

L

∥∥∥∥[∇F̃Bk
(xk)−∇F̃Bk

(x∗)
]
I 6=0
k+1

∥∥∥∥2
2

.

(73)

Combining with the optimal condition and x∗ ∈ Ok, (73) can be rewritten as

[
∇F̃Bk

(xk)
]T
I 6=0
k+1

[xk − x∗]I 6=0
k+1
≥ 1

L

∥∥∥∥[∇F̃Bk
(xk)

]
I 6=0
k+1

∥∥∥∥2
2

. (74)

Additionally, it follows the assumption of this lemma and Lemma 6 that∥∥∥[x∗]I0k+1

∥∥∥2
2
= 0. (75)

By the above (74) and (75), (72) can be further simplified as

‖xk+1 − x∗‖22 ≤
∥∥∥[xk − x∗]I 6=0

k+1

∥∥∥2
2
−
(
2αk
L
− α2

k

)∥∥∥∥[∇F̃Bk
(xk)

]
I 6=0
k+1

∥∥∥∥2
2

. (76)

Now it follows 0 < αk < 2/L that

‖xk+1 − x∗‖22 ≤
∥∥∥[xk − x∗]I 6=0

k+1

∥∥∥2
2
≤ ‖xk − x∗‖22 = δ2 (77)

which completes the proof.

The Lemma 8 below shows if current iterate xk locates closely enough to x∗ and
step size αk is properly selected, then x∗ inhabits all subsequently Orthant faces.
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Lemma 8. If ‖xK − x∗‖2 ≤ δ, {k : k ≥ K, k ∈ Z+} ⊆ SO andαk ∈ (0,min{2/L, 2δ/M}),
then x∗ ∈ Ok for any k ≥ K.

Proof. It follows Lemma 5 and the assumption of this lemma that x∗ ∈ OK . Combining
with αk ∈ (0,min{2/L, 2δ/M}) and Lemma 7, that the assumption of Lemma 5 still
holds for K +1, hence x∗ ∈ OK+1. Therefore, we can iteratively employing Lemma 5
and 7 to show that x∗ ∈ Ok holds for any k ∈ {k : k ≥ K, k ∈ Z+} ⊆ SO.

We now establish the proof for the second case of Theorem 1.
Proof of Theorem 1(ii): We know that Algorithm 1 performs an infinite sequence of
iterations. It follows Corollary 2 that for any ` ∈ SP

⋃
SO,

EF (x0)− EF (x`+1) =
∑̀
k=0

EF (xk)− EF (xk+1)

≥
∑
k∈SP
k≤`

(
αk −

α2
kL

2

)
E ‖Gαk,Bk

(xk)‖22 +
∑
k∈SO
k≤`

(
αk −

α2
kL

2

)
E ‖dk‖22

(78)

Combining the assumption that F is bounded below on the level set L := {x ∈ Rn :
F (x) ≤ F (x0)}, |SO| =∞ and letting `→∞, we obtain

∑
k∈SO

(
αk −

α2
kL

2

)
E ‖dk‖22 <∞ (79)

Similarly to the proof of Theorem 13 that under the step size setting (16) and (17), there
exists a subsequence of S ∈ SO such that

lim
k∈S

E ‖dk‖22 = 0 (80)

It followsαk ∈ (0,min{2/L, 2δ/M}), Lemma 8 and Lemma 4(ii) that limk→∞ E[F (xk)] =
F ∗ and limk→∞ E[xk] = x∗ if optimal solution is unique.

B.3 Proof of Theorem 2

We first show that the general PL condition (21) implies a different Proximal PL condi-
tion in [4], i.e., there exists a µ > 0 such that

Dλ‖·‖1(x, η) ≥ 2µ(F (x)− F ∗) (81)

where

Dλ‖·‖1(x, η) = −2η min
y∈Rn

{
∇f(x)T (y − x) + η

2
‖y − x‖22 + λ ‖y‖1 − λ ‖x‖1

}
.

(82)
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Lemma 9. If there exists a µ > 0 such that for all x ∈ Rn

‖Gα(x)‖22 ≥ 2µ(F (x)− F ∗), (83)

then for all x ∈ Rn, the Dλ‖·‖1(x, 1/α) satisfies

Dλ‖·‖1(x, 1/α) ≥ 2µ(F (x)− F ∗). (84)

Proof. Let ŷ = argminy

{
∇f(x)T (y − x) + 1

2α ‖y − x‖
2
2 + λ ‖y‖1 − λ ‖x‖1

}
, then

0 ∈ ∇f(x) + 1

α
(ŷ − x) + λ∂ ‖ŷ‖1 ,

ŷ − x ∈ −α(∇f(x) + λ∂ ‖ŷ‖1).
(85)

It follows the definition of Dλ‖·‖1(x, 1/α) that

Dλ‖·‖1(x, 1/α)

=
−2
α

{
∇f(x)T (ŷ − x) + 1

2α
‖ŷ − x‖22 + λ ‖ŷ‖1 − λ ‖x‖1

}
∈−2
α

{
−α∇f(x)T (∇f(x) + λ∂ ‖ŷ‖1) +

1

2α
α2 ‖∇f(x) + λ∂ ‖ŷ‖1‖

2
+ λ ‖ŷ‖1 − λ ‖x‖1

}
=2∇f(x)T (∇f(x) + λ∂ ‖ŷ‖1) + 2/α(λ ‖x̂‖1 − λ ‖y‖1)− ‖∇f(x) + λ∂ ‖ŷ‖1‖

2

≥2∇f(x)T (∇f(x) + λ∂ ‖ŷ‖1) + 2/αλ∂ ‖ŷ‖1 (x− ŷ)− ‖∇f(x) + λ∂ ‖ŷ‖1‖
2

=2∇f(x)T (∇f(x) + λ∂ ‖ŷ‖1) + λ∂ ‖ŷ‖1 (∇f(x) + λ∂ ‖ŷ‖1)− ‖∇f(x) + λ∂ ‖ŷ‖1‖
2

=2 ‖(∇f(x) + λ∂ ‖ŷ‖1)‖
2 − ‖∇f(x) + λ∂ ‖ŷ‖1‖

2

= ‖∇f(x) + λ∂ ‖ŷ‖1‖
2

(86)

On the other hand, the gradient mapping Gα(x) exactly belongs to ∇f(x) + λ∂ ‖ŷ‖1.
Consequently, the following inequality holds

Dλ‖·‖1(x, 1/α) ≥ ‖Gα(x)‖
2
2 ≥ 2µ(F (x)− F ∗) (87)

for any x ∈ Rn by the assumption of this lemma, which completes the proof.

To distinguish these two different PL conditions, we refer the PL condition in (21)
as G-PL condition and the one in (81) as D-PL condition.

The highlight idea of Theorem 2 is now presented as follows: if f(x) is convex
and satisfies PL condition like (21), when the step size α is sufficiently small, and
the size of mini-batch is sufficiently large, there exists an upper bound NP such that
‖x− x∗‖2 ≤ δ can be achieved by employing NP Prox-SG Steps with high probabil-
ity.
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Proof of Theorem 2: At first, since F (x) satisfies the G-PL condition (21), it also
satisfies D-PL condition due to Lemma 9. It then follows [4, Appendix G], specifically
D-PL condition implies the Proximal Error Bound that there exists some 1

2L > γ > 0
such that

‖x− x∗‖2 ≤ γ ‖Gη(x)‖2 (88)

holds for any x ∈ Rn and any η > 0.

For any k ≤ NP , k ∈ SP , at k-th iteration, let Gαk
(x) be the full gradient map-

ping at point x, let Gαk,Bk
(x) be the mini-batch gradient mapping at point x with

EBk
[Gαk,Bk

(x)|x] = Gαk
(x), and let ek(x) be the difference between full gradient

mapping and mini-batch gradient mapping such that

Gαk,Bk
(x) = Gαk

(x) + ek, (89)

with EBk
[ek|xk] = 0 where xk denotes the starting point at k-th iteration. Notice that

condition on xk, Gαk
(xk) is independent with ek.

Based on Lemma 1, given xk and a random sampled mini-batch Bk, the expected
Euclidean distance square between next iterate xk+1 and the solution x∗ given xk can
be computed as follows

EBk
[‖xk+1 − x∗‖22 |xk]

=EBk
[‖xk − αkGαk,Bk

(xk)− x∗‖22 |xk]

=EBk
[‖xk − x∗‖22 |xk]− 2αk(xk − x∗)TEBk

[Gαk,Bk
(xk)|xk] + α2

kEBk
[‖Gαk,Bk

(xk)‖22 |xk]

= ‖xk − x∗‖22 − 2αk(xk − x∗)TGαk
(xk) + α2

k{‖EBk
[Gαk,Bk

(xk)|xk]‖2 + EBk
[‖ek(xk)‖2 |xk]}

= ‖xk − x∗‖2 − 2αk(xk − x∗)TGαk
(xk) + α2

k{‖Gαk
(xk)‖2 + EBk

[‖ek(xk)‖2 |xk]

= ‖xk − αkGαk
(xk)− x∗‖22 + α2

kEBk
[‖ek(xk)‖2 |xk]

(90)

where the first term ‖xk − αkGαk
(xk)− x∗‖22 is the distance square obtained via start-

ing at xk followed by doing a proximal full gradient descent step, and the second term
α2
kEBk

[‖ek(xk)‖2 |xk] is the random noise generated from the kth mini-batch stochas-
tic gradient descent step combining with step size αk.

To upper bound the first term, notice that for a proximal full gradient descent, it
follows Proximal Error Bound (88), αk ∈ (0, 1/L] and [3, Theorem 3.2] that

‖xk − αkGαk
(xk)− x∗‖22 ≤

(
1− 1

2Lγ

)
Ĉ(F (xk)− F ∗) (91)

where Ĉ is a constant as 2

L(1−
√

1−(2Lγ)−1)2
. Based on [4, Theorem 4], since F has

L-Lipschitz continuous gradient and satisfies G-PL condition, if we use a constant step
size αk ≡ α < 1

2µ , then we obtain a linear convergence rate up to a solution level that
is proportional to α,

E [F (xk)− F ∗] ≤ (1− 2µα)k (F (x0)− F ∗) +
LD2α

4µ
, (92)
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where D is the bound of norm of gradient mapping estimation which is well defined by
Assumption 1 and (1).

To upper bound the second term, since the norm of gradient mapping is bounded,
let Bi be a one-point mini-batch, then for any x, there exists a constant σ > 0 such that

σ2 ≥ EBi∼Unif[n]

[
(Gαk,Bk

(x)− Gαk
(x))

2
]

(93)

i.e., σ2 is an upper bound for the noise generated from a one-point mini-batch stochastic
proximal gradient descent step. By computational, we have

EBk

[
‖ek‖2

∣∣∣∣ yk] ≤ σ2

|Bk|
, (94)

which gives an upper bound propotion to 1
|Bk| .

Therefore, combining (90), (92), and (94)

E[‖xk+1 − x∗‖22]

=E[‖xk − αkGαk
(xk)− x∗‖22] + α2

kEBk
[‖ek(xk)‖2 |xk]

≤
(
1− 1

2Lγ

)
Ĉ

[
(1− 2µα)k (F (x0)− F ∗) +

LD2α

4µ

]
+

σ2

|Bk|
.

(95)

Now for any 1 > τ > 0, if the step size α is sufficient small and satisfies

α <
8γµτδ2

(2Lγ − 1)ĈD2
, (96)

then
8γµτδ2 − (2Lγ − 1)ĈD2α > 0 (97)

Moreover, if mini-batch size is sufficiently large and satisfies

|Bk| >
8γµσ2

8γµτδ2 − (2Lγ − 1)ĈD2α
(98)

then

τδ2 − σ2

|Bk|
−
(
1− 1

2Lγ

)
Ĉ
LD2α

4µ
> 0. (99)

Thus, there exist some well-defined k ≥ 0 such that(
1− 1

2Lγ

)
Ĉ(1− 2µα)k (F (x0)− F ∗) ≤ τδ2 −

σ2

|Bk|
−
(
1− 1

2Lγ

)
Ĉ
LD2α

4µ
(100)

Notice that the right hand side of (100) is a polynomial of τδ2, 1/|Bk| and α, and(
1− 1

2Lγ

)
Ĉ on the left hand side of (100) is a constant given F . Thus to let (100)

hold, k should satisfy

k ≥ K :=

⌈
log (poly(τδ2, 1/|Bk|, α)/(F (x0)− F ∗))

log (1− 2µα)

⌉
(101)
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where poly(τδ2, 1/|Bk|, α) represents a polynomial of τδ2, 1/|Bk| and α.
Now, it follows (95) that if (96), (98) and (101) hold, then

E[‖xk+1 − x∗‖22] ≤ τδ
2, (102)

now combine with Markov inequality that

P
(
‖xk+1 − x∗‖22 ≥ δ2

)
≤ E[‖xk+1 − x∗‖22]

δ2
≤ τ. (103)

which indicates the event ‖xk+1 − x∗‖22 ≤ δ2 holds with probability at least 1− τ for
any k ≥ K.

B.4 Proof of Theorem 3 for nonconvex settings

In this Appendix, we present the proofs of the convergence theorem for nonconvex set-
tings.

Proof of Theorem 3(i): Similar to proof of Theorem 1(i), we have that∑
k∈SP

(
αk −

α2
kL

2

)
E ‖Gαk,Bk

(xk)‖22 <∞ (104)

Suppose case (16) holds, i.e. 0 < αk ≡ α ≤ 1
L , then

1

2L

∑
k∈SP

E ‖Gαk,Bk
(xk)‖22 <∞.

Consequently, we have

lim
k∈SP

E ‖Gαk,Bk
(xk)‖22 = 0 , lim

k∈SP
E[Gαk,Bk

(xk)] = 0 (105)

Suppose case (17) holds, rewrite (79) as∑
k∈SP

αkE ‖Gαk,Bk
(xk)‖22 −

∑
k∈SP

α2
kL

2
E ‖Gαk,Bk

(xk)‖22 <∞ (106)

It follows Assumption 1, (17) and Lemma 3 that∑
k∈SP

α2
kL

2
E ‖Gαk,Bk

(xk)‖22 <∞, (107)

which implies that ∑
k∈SP

αkE ‖Gαk,Bk
(xk)‖22 <∞. (108)

combining with αk > 0,
∑∞
k=0 αk =∞, we obtain

lim inf
k∈SP

E ‖Gαk,Bk
(xk)‖22 = 0, (109)
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which completes the proof.

Now we establish the proof of Theorem 3(ii) for OBProx-SG+. Remark here that
although f(x) is nonconvex Rn, we assume f(x) is convex on a subset X := {x :
‖x− x̂‖2 ≤ δ} for some stationary point x̂.

Proof of Theorem 3(ii): Similarly to proof of Theorem 1(ii), we have that under the
step size setting (16) and (17), there exists a subsequence of S ∈ SO such that

lim
k∈S

E
∥∥∥∇F̃Bk

(xk)
∥∥∥2
2
= 0 (110)

At first, it follows f(x) is convex onX := {x : ‖x− x̂‖2 ≤ δ} that Lemma, 5, 6, 7, 8
are still applicable for x̂. Hence, combining with αk ≤ min{2/L, 2δ/M}, the sta-
tionary point x̂ of problem (1) is also one stationary point of subproblem (8) for any
k ∈ SO. Therefore, by proof on contradiction, (110) indicates that for the subsequence
of S ∈ SO

lim
k∈S

E ‖Gαk,Bk
(xk)‖22 = 0. (111)

C Switching Mechanism Comparison

In this section, we dive into the performance of OBProx-SG under different switching
mechanisms to numerically demonstrate the superiority of the control mechanism under
NP and NO presented in the main body of this paper.

As a competitor, we design another switching mechanism stated as Algorithm 5, by
making use of the optimality measure inspired by the multi-routine deterministic opti-
mization algorithms [2,5]. Particularly, at kth iteration, we at first compute a minimum-
norm subgradient g(x) defined as follows

[g(x)]i =


[∇f(x)]i + λ if [x]i > 0 or ([x]i = 0 and [∇f(x)]i + λ < 0)

[∇f(x)]i − λ if [x]i < 0 or ([x]i = 0 and [∇f(x)]i − λ > 0)

0 otherwise
(112)

on xk, or its estimator on a subset of full data points B̂, see line 2 in Algorithm 5.
Then we compute the norm of subvector in gB̂(xk) corresponding to the indices of
zero entries on xk, and the norm of subvector in gB̂(xk) for the non-zero entries. If∥∥[gB̂(xk)]I0(xk)

∥∥
2
≥
∥∥[gB̂(xk)]I 6=0(xk)

∥∥
2
, then the progress by freeing zero variables

on xk to non-zero may produce more progress to the optimality. Since the Prox-SG
Step mainly serves as predicting the supports (non-zero entries) of the solution, then
employing Prox-SG Step at current iteration is a reasonable choice. Otherwise, we se-
lect Orthant Step to promote the sparsity.

Next, we test OBProx-SG under the switching mechanism as Algorithm 5 on the
convex experiments in Section 4.1, where at each iteration B̂ is constructed by uni-
formly sampling 5% data points. The numerical results are provided in Table 7 for
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Algorithm 5 Switching Mechanism by Optimality Measure.

1: Input: k, xk, B̂.
2: Compute the minimum-norm subgradient (112) on B̂, denoted as gB̂(xk).
3: if

∥∥[gB̂(xk)]I0(xk)∥∥2 ≥ ∥∥[gB̂(xk)]I 6=0(xk)

∥∥
2

then
4: Return Prox-SG step is selected.
5: else
6: Return Orthant step is selected.

final objective function values (F/f) and Table 8 for density of solutions. We ob-
serve that OBProx-SG under different switching mechanisms can achieve quite compet-
itive objective function values F/f on these convex problems. However, it is apparent
that OBProx-SG under switching mechanism by optimality measure computes solu-
tions with obviously lower sparsity (higer density) comparing with OBProx-SG under
switching mechanism by NP and NO. It is because the randomness of B̂ may not guar-
antee the OBProx-SG ends with Orthant Step but Prox-SG Step which is highly likely
to deteriorate the progress of sparsity exploration. Therefore due to additionally compu-
tational cost of Algorithm 5 and the unreliability of sparsity promotion, we recommend
to use Algorithm 4 as the default switch.

Table 7: Objective function values F/f on convex problems.

Problems
Switch

Algorithm 4 Algorithm 4
Algorithm 5

NP = 5, NO = 5 NP = 15, NO =∞
a9a 0.327 / 0.326 0.329 / 0.328 0.331 / 0.329

higgs 0.326 / 0.326 0.326 / 0.326 0.326 / 0.326
ijcnn1 0.198 / 0.197 0.198 / 0.197 0.199 / 0.198
kdda 0.102 / 0.102 0.102 / 0.102 0.102 / 0.102

news20 0.413 / 0.355 0.413 / 0.355 0.413 / 0.355
real-sim 0.164 / 0.125 0.164 / 0.125 0.165 / 0.126

rcv1 0.242 / 0.179 0.242 / 0.179 0.242 / 0.179
susy 0.376 / 0.376 0.376 / 0.376 0.376 / 0.376

url combined 0.050 / 0.049 0.047 / 0.046 0.090 / 0.090
w8a 0.052 / 0.048 0.052 / 0.048 0.052 / 0.048
best 9 9 6

second best 1 1 0
sum 10 10 6
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Table 8: Density of solutions on convex problems.

Problems
Switch

Algorithm 4 Algorithm 4
Algorithm 5

NP = 5, NO = 5 NP = 15, NO =∞
a9a 62.10 59.68 59.68

higgs 70.69 70.69 89.66
ijcnn1 56.52 56.52 56.52
kdda 0.08 0.06 0.34

news20 0.20 0.19 2.22
real-sim 22.44 22.15 21.52

rcv1 4.36 4.33 10.42
susy 73.68 73.68 94.74

url combined 3.26 3.00 4.91
w8a 78.03 74.75 71.10
best 3 8 4

second best 4 2 0
sum 7 10 4
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