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Abstract

The application of visual-to-music generation
(VTM) is rapidly growing. However, cur-
rent VIM methods struggle with capturing
the relationship between visuals and music in
open-domain settings, mainly due to two chal-
lenges: the lack of large-scale, high-quality
visual-music paired datasets and the absence
of direct semantic correspondence between vi-
suals and music. In this work, we propose
CoT-VTM, a framework that distills Chain-of-
Thought (CoT) reasoning to enable visual-to-
music generation without paired data, while
efficiently producing music aligned with vi-
sual content in open-domain settings. We first
bridge the gap between visual, music, and
text data using appropriate foundation mod-
els. Next, we identify key elements of the
visual-music relationship and design a CoT
prompt for visual-to-music mapping. To fully
distill the reasoning of CoT, we incorporate la-
tent information from intermediate reasoning
steps as supervisory signals alongside visual
and music supervision. Finally, we design a
two-stage mapping distillation training process:
the first stage uses discriminative MLP mod-
ules, while the second uses a generative embed-
ding diffusion model (EmbedDiff). Our model
achieves optimal performance on both image-
to-music and video-to-music tasks. Project
page: https://xxkkxxx.github.io/cot-vtm/

1 Introduction

Synesthesia, the phenomenon of associating music
with specific visuals (Wang et al., 2023), has prac-
tical applications across various fields. In the film
industry, appropriate background music enhances
viewer immersion, a technique now widely used in
advertising, animation, and social media content.
However, manually selecting or composing music
is costly and poses copyright challenges. Thus, this
study focuses on generating instrumental music
from visual content within an open visual domain.
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Figure 1: In the VTM task, there is no direct semantic
correspondence between visuals and music, with LLM-
based chain-of-thought reasoning capturing the implicit
correspondence between them.

The task of generating music based on visual
content is referred to as Visual-to-Music (VIM).
Some existing VIM works are limited to specific
scenarios, such as (Zhu et al., 2022b) and (Yu et al.,
2023) that generate music from dance videos or
other motion-rich video inputs. However, VIM in
an open visual domain is far more challenging. The
potential limitation for current methods in open-
domain music generation lies in the need for large-
scale, high-quality video-music paired datasets.
This is similar to other cross-modal generation
tasks like Text-to-Visual (TTV) (Rombach et al.,
2022; Nan et al., 2024), where success is based on
large-scale, high-quality paired text-visual datasets.
However, most current video-music datasets(Hong
et al., 2017; Zhu et al., 2022a), sourced from plat-
forms like YouTube or TikTok, suffer from issues
such as strong personal preferences and poor music
quality. Some music video (MV) datasets (Kang
et al., 2024; Zhuo et al., 2023) are mixed with hu-
man vocals, which limits the generation quality.
Moreover, these datasets are substantially smaller
than those used in TTV tasks.

Additionally, compared to other cross-modal
generation tasks like text-to-video (TTV) or video-
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to-audio (VTA), visual-to-music (VTM) presents a
unique challenge in capturing the mapping between
the two modalities. In TTV tasks, the relationship
between text and visuals is semantically clear, and
in VTA tasks, visual content often corresponds di-
rectly to natural sounds (e.g., a barking dog or
running water). In contrast, the relationship be-
tween visuals and music in VIM is ambiguous and
subjective (Wang et al., 2023). Several approaches
(Wang et al., 2023; Xiong et al., 2022) have used
emotions or lyrics as intermediaries to bridge the
gap between visuals and music, although this im-
poses stricter annotation requirements for training
datasets.

Although there is no explicit semantic correspon-
dence between visuals and music, certain visual
factors(Ullah and Choi, 2024; Wu et al., 2016) im-
plicitly influence corresponding elements in mu-
sic, such as emotion, instruments, and rhythm.
As a result, directly training a mapping model on
paired data to capture the complex implicit relation-
ships between visual and music proves challenging
and prone to local optima. Inspired by the suc-
cess of CoT prompting in Large Language Models
(LLMs)(Kojima et al., 2022), we aim to leverage
its reasoning power to uncover these complex map-
pings as illustrated in Figure 1. However, applying
CoT to LLMs generates large volumes of intermedi-
ate outputs, which slows the inference speeds. We
argue that for the specific task of visual-to-music
mapping, such large-scale models are unnecessary.

We introduce the CoT-VTM framework, which
leverages CoT reasoning to eliminate the reliance
on paired video-music data, enabling efficient gen-
eration of high-quality music that aligns with visual
content in open-domain. The CoT-VTM architec-
ture is depicted in Figure 2. Initially, we identify
implicit relationships between visual elements and
musical elements, drawing on existing research (Ul-
lah and Choi, 2024; Wu et al., 2016), and design
a CoT prompt tailored for visual-to-music map-
ping, transforming visual captions into musical de-
scriptions. To fully optimize the reasoning power
of CoT, we integrate latent information, derived
during the reasoning process but absent from the
final output, as supervisory signals in the distilla-
tion training. We then encode textual supervisory
signals into continuous embeddings using a suit-
able text encoder, forming supervision data for the
mapping process. Given that latent information
primarily pertains to visual analysis, we establish
a one-to-one mapping between visual and latent

information, while the relationship between visual
elements and music is one-to-many. This leads
to a two-stage approach: the first stage employs
a multilayer perceptron (MLP) to map visual data
to latent information, and the second stage uses
a diffusion-based model, the embedding diffusion
model (EmbedDiff), to map latent information to
music. We utilize CLIP (Radford et al., 2021) to
bridge the gap between visual data and visual cap-
tions, and musicGen (Copet et al., 2023) to bridge
the gap between music audio and musical descrip-
tions. CLIP (Radford et al., 2021) aligns visual
and textual descriptions in a shared space, while
musicGen (Copet et al., 2023) decodes music de-
scriptions into actual audio.

The main contributions of our work can be sum-

marized as follows:

* This is the first exploration of applying LLM-
driven Chain-of-Thought reasoning to the
VTM task.

* The CoT-VTM framework efficiently gener-
ates music based on visual content in open-
domain scenarios without the need for paired
visual-music data.

* Our theoretical and experimental results val-
idate that CoT-VTM effectively utilizes CoT
reasoning to produce high-quality and effi-
cient visual-to-music mappings.

* CoT-VTM provides a novel paradigm for dis-
tilling LLM chain-of-thought reasoning.

2 Related Work

Music generation The music generation model
has rapidly advanced (Dhariwal et al., 2020; Evans
et al.; Forsgren and Martiros, 2022; Huang et al.,
2023; Lu et al., 2023; Chen et al., 2024; Agostinelli
et al., 2023; Schneider et al., 2024; Tang et al.,
2024, 2023; Ziv et al., 2024). Recent models
(Agostinelli et al., 2023; Copet et al., 2023) first
convert continuous audio signals into discrete to-
kens, then train a text-conditioned music genera-
tion model from text prompts. Additionally, recent
diffusion-based music generation methods (Schnei-
der et al., 2024; Huang et al., 2023; Chen et al.,
2024) use diffusion networks to predict music au-
dio based on text prompts.

Visual-to-Music generation Current V2M meth-
ods can be divided into two types: Image-to-Music
and Video-to-Music. In I2M work, BGT (Xiong
et al., 2022) uses lyrics as an intermediary to gen-
erate music from images. Works such as (Santos
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Figure 2: Overview of the CoT-VTM for video-to-music generation. The upper part shows the process of Chain-of-
Thought reasoning by the LLM to generate supervised data. The lower part illustrates the distillation training and
model inference process, where visual data X, and visual text descriptions X,,; are used during training, and raw

visual data is used during inference.

et al.; Saito et al., 2021) employ low-level image
features as a bridge between images and music,
while (Wang et al., 2023; Tian et al., 2025; Hisariya
et al., 2024) use emotion as an intermediary to con-
nect images with music. In V2M work, (Zhu et al.,
2022a; Zhu et al.; Yu et al., 2023) focus on gen-
erating music conditioned on motion. In the open
visual domain, (Di et al., 2021) uses rule-based
methods to link video and music. Recent works
such as (Kang et al., 2024; Li et al., 2024; Su et al.,
2024; Lin et al., 2024; Tian et al., 2024) heavily rely
on the scale and quality of visual-music paired data.
Another line of work, such as (Haseeb et al., 2024,
Liu et al., 2023), avoids dependence on large-scale
video-music pairs by utilizing the powerful reason-
ing capabilities of LLMs. However, this leads to a
significant increase in model parameters, which in
turn causes slower inference times.

CoT distillation While direct prompting enables
large language models (LLMs) to perform com-
plex reasoning through Chain-of-Thought (CoT),
smaller language models (SLMs) struggle due
to limited capacity(Stolfo et al., 2023). Knowl-
edge distillation (KD) provides an effective frame-
work for transferring the reasoning capabilities
of teacher models to SLMs(Xu et al., 2024). A
simple yet effective approach is using a teacher-
student paradigm, where teacher-generated CoT

steps guide the SLMs, addressing their limitations
and enhancing performance on reasoning-intensive
tasks. Traditional approaches(Hsieh et al., 2023;
Ho et al., 2023; Magister et al., 2023) typically
train smaller student models to mimic the step-by-
step outputs from larger teacher LLMs. (Ranaldi
and Freitas, 2024) help students generate struc-
tured reasoning, improving performance in tasks
such as question answering and mathematics, while
(Zhuang et al., 2025) propose a unified structured
CoT distillation framework for effective knowledge
transfer. In contrast, our approach introduces a new
architecture where, instead of using a transformer-
based student model that performs autoregressive
modeling, we leverage a suitable pre-trained en-
coder to encode discrete tokens into high-density
continuous embeddings. We then use diffusion for
joint probability modeling and conduct phase-wise
distillation based on the characteristics of the CoT
data.

3 CoT-VIM
3.1 Task Definition

In general, we model the visual-to-music genera-
tion task as the conditional probability distribution
of generating music X,,, given a visual condition
Xy

Xm ~ P(Xm ‘ Xv) (D
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Figure 3: The three steps of Chain-of-Thought reasoning by the LLM: The first stage f1(-) maps visual captions to
visual elements; the second stage f2(-) maps visual elements to music elements; the third stage f3(-) maps music

elements to a comprehensive music description.

Considering that the text-to-music task has already
achieved significant success, in this work, we aim
to generate the textual description of music based
on the visual condition. We then use a pre-trained
musicGen (Copet et al., 2023) to generate the cor-
responding music from the generated textual de-
scription. Thus, we model the task as generating
the music textual description X+ given the visual
condition X,:

th ~ P(th ’ Xv) (2)

3.2 Reasoning Process

Due to the lack of direct semantic correspondence
between visual and music, directly mapping the vi-
sual space to the music space is highly challenging.
Therefore, we first explore the implicit associations
between visual elements and music elements, and
then divide the reasoning process into three stages,
as shown in Figure 3.

In the first stage, we focus on analyzing the cap-
tions of visual data and extracting the various el-
ements within the visual content. We do not ex-
tract all the elements present in the visual data,
but rather focus on those visual elements that in-
fluence the music generation. Based on previous
approaches (Ullah and Choi, 2024; Wu et al., 2016),
we identify the key visual elements V, that influ-
ence music generation, including object V,;, emo-
tion Ve, dynamic Vg, and color V,.,;. The LLM
maps the visual caption X,; to the visual elements
Ve in the first stage :

Ve = (Vobj7 V;zmm denv Vcol) = fl (th) (3)

In the second stage, to set the required music el-
ements, we analyze the text instructions used in

musicGen (Copet et al., 2023) for text-to-music
generation tasks. Specifically, we randomly se-
lect 50 text instruction samples from the training
dataset. Using an LLLM, we analyze the key musi-
cal elements in music text instructions. Based on
this, we also refer to previous works (Ullah and
Choi, 2024; Wu et al., 2016) to investigate how
the visual elements identified in the first stage can
influence the music elements extracted in this stage.
Finally, we extract four key music elements M.:
genre Mgey,, instrument M, s, thythm M., and
emotion Me,,,. The LLM maps the visual ele-
ments V. obtained in the first stage to the music
elements M, in the second stage :

Me = (Mgeny Mins; Mrhyv Memo) = f2(‘/;) (4)

In the third stage, the LLM performs the final syn-
thesis and coordination of the different music ele-
ments to produce a comprehensive music descrip-
tion Xt :

Xomt = f3(M) ®)

3.3 CoT Prompt Engineering

Following previous approaches (e.g., few-shot and
CoT prompting), we carefully design the CoT
prompt based on the analysis in Section 3.2 to en-
sure that the LLM can complete the three-stage
reasoning process of visual-to-music mapping and
generate high-quality music descriptions. Our de-
signed CoT prompt Pc,r consists of five parts:
the expert role section Py pert, the task objective
section P, the step-by-step reasoning section
Piteps, the output example section Peyqmpre, and
the visual caption section X,;. We present a de-

12496



tailed CoT prompt in Appendix A:

PCoT = [Pe:cpert] [Ptask] [Psteps] [Pea:ample} [th]
(6)
By using the designed CoT prompt to guide the
LLM through the three-stage reasoning process
mentioned in Section 3.2:

Xm = f(Peor(Xut)) (7N

3.4 Data Preparation

We first construct the VTD dataset, which centers
on visual text descriptions and comprises three
parts: (1) paired text-visual data used in TTV
tasks, (2) emotion-labeled image datasets annotated
by image labeling models, and (3) diverse visual
scene descriptions generated by carefully designed
prompts guiding a LLM. Detailed information can
be found in Appendix B and Section 4.1. Next, we
extract the visual text descriptions X,; from the
VTD dataset, embed them into the CoT prompt,
and use the LLM to generate the reasoning process
Rationale and final answer Answer. From both
Rationale and Answer, we extract the latent in-
formation X, and the music text description X,
respectively. This process is applied to all X, in
the dataset, yielding the supervised data required
for training the visual-to-music mapping module,
denoted as D = {(xy¢, Tre, xmt)}i]il.

To achieve more efficient training, we se-
lect appropriate pre-trained encoders to encode
(Xut, Xrt, Xomt) into low-dimensional embedding
data. Considering that the CLIP (Radford et al.,
2021) maps visual and textual data into a shared
feature space and is trained on 400M paired text-
image data, offering strong generalization capabil-
ity, we first choose CLIP (Radford et al., 2021)
as the visual encoder. Using visual and text en-
coders of CLIP(Radford et al., 2021), we encode
the raw visual data X, and visual text data X,
into visual embeddings F, € R¢ and E,; € R®
. Given that the latent information is more com-
plex, and to minimize information loss while en-
suring comprehensive representation, we select
the state-of-the-art text encoding model LLM?2Vec
(BehnamGhader et al., 2024) as the encoder for the
latent information, encoding X, into latent em-
beddings E, € RP. For music description data,
since we are using the music generation model Mu-
sicGen (Copet et al., 2023) , which first encodes
music description text into embeddings via the T5
(Raffel et al., 2020) text encoder, we select T5

(Raffel et al., 2020) as the encoder for music text
description data X,,;, encoding X,,; into music
embeddings E; € RS,

3.5 Visual-to-Music Mapping

Through the work in this section, we encode the dis-
crete textual supervisory signals (Xy¢, Xyt, Xint)
into continuous embedding data (E,, E,, E,,).
This means that our subsequent training process
only needs to operate on the embedding data. To
make the visual-to-music mapping results more
stable and accurate, and to avoid the model from
falling into local optima, we do not directly map E,
to E,,. Instead, we emulate the reasoning process
of CoT by using the intermediate reasoning pro-
cess to trigger the model’s reasoning ability. Next,
I prove the theoretical feasibility of this approach
starting from the definition of the VTM task. The
detailed proof process can be found in Appendix C.
Based on the original VTM definition, we trans-
form the problem into generating music E,, given
the visual condition F,:

Em ~ P(Em | Ev) (8)

We adapt the CoT methodology by introducing
E,. into the video-to-music mapping. Here, F,
corresponds to question and prompt in the CoT
reasoning, F,, corresponds to the answer, and F,
corresponds to the rationale:

P(Ew,E, | Ey) = P(En | Er,Ey) - P(E: | Ey)  (9)

The original VIM modeling is therefore trans-
formed as follows:

Ep ~ P(Em | Ev,Ey) - P(E. | E,)  (10)

Through the above theoretical analysis and mod-
eling, we address the core issue of applying the
powerful reasoning capability of CoT to the visual-
to-music mapping task. Based on this, we de-
sign two mapping modules to sequentially achieve
the mappings P(FE, | E,) from E, to E,, and
P(E,, | E., E,) from E, and E, to E,,. For
the first mapping P(FE, | E,), since the primary
content of the latent information involves a dis-
criminative analysis of visual factors, we treat the
relationship between F, and E, as a one-to-one
discriminative correspondence. Both the raw visual
data and the latent information are encoded into
dense continuous feature representations, enabling
a lightweight MLP to effectively learn this map-
ping.Hence, we design a discriminative mapping
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module (MLP) to perform the mapping from E, to
FE,. based on multilayer perceptrons.

E. = MLP(E,) an

We use Mean Square Error loss to guide the train-
ing. The training process can be formulated as
follows:

r

L=E,jx {HE() —EW ﬂ (12)

where K is the batch size and E,(,Z)/ is from
MLP(EY).

Inspired by DALLE2’s prior model (Ramesh
et al., 2022), we treat the projection process as a
conditional generation task, which models a one-
to-many mapping to ensure the diversity and gen-
eralization of the target music distribution. Given
that visual and music data are not one-to-one corre-
spondences, we design an embedding conditional
diffusion mapping module, abbreviated as Embed-
Diff, based on the generative model diffusion to
model P(E,, | E,, E,). We first use a mapping
layer fy,p(-) to map E, € RP to the same size as
E, € R, obtaining E; € RC. We concatenate
E, € R and E;, € RY as conditions to generate
E,, € R®. In the forward process, the original
music embedding distribution transforms into a
standard Gaussian distribution by gradually adding
noise with a fixed schedule a1, . . ., ap, where T is
the total number of timesteps, and &; = H§:1 oy

a(EY | Bf ) = N(Ers Vo Bl (1—an)I) (13)

a(EL | En) = N(EhivarEm, (1 —a)I)  (14)

The goal of EmbedDiff is to mirror score matching
by optimizing the denoising objective:

Lomveanifs = Epo 4. [lle = eo(En,t, By, E,)|3] (15)

After EmbedDiff is trained, we generate the music
embedding F,, by sampling through the reverse
process with EL ~ A(0,I), conditioned on the
given visual embedding F, and rationale F,., using
the following reverse dynamics:

po(Er ' | E) = N(E Y po(Er, t, By, Er), 07 1)
(16)

Finally, the music audio %, is obtained by de-
coding the generated E9 with a music decoder D,
where 2, = D(EY,). In the COT-VTM framework,
musicGen (Copet et al., 2023) is used as the mu-
sic decoder. It employs a single-stage transformer

model that processes compressed discrete music
representations, eliminating the need for multiple
cascading models or upsampling. This efficient
design enables musicGen (Copet et al., 2023) to
generate high-quality mono and stereo music sam-
ples at a faster speed.

4 Experiments

4.1 Dataset

To enable the model to generate music correspond-
ing with data in an open visual domain, we con-
structed a training dataset, VDM, consisting of
three parts. The first part includes text-image
and text-video paired data (Srinivasan et al., 2021;
Wang et al.), with 10k samples each. The second
part is based on the Emoset (Yang et al., 2023)
image sentiment classification dataset, which re-
sults in 11k text-image pairs generated using the
Qwen2-vl (Wang et al., 2024) for image annota-
tion. The third part consists of 10k textual descrip-
tions of visual scenes, generated using carefully
designed prompts with the GPT-40 API. The ra-
tionale for selecting these datasets is explained in
Appendix B. In total, 41K data points were used for
model training. To effectively evaluate the model’s
performance in generating music in the open vi-
sual domain, we have constructed two test sets for
the I2M and V2M tasks based on existing visual-
music paired datasets (Hong et al., 2017; Zhu et al.,
2022a; Li et al., 2018, 2021, 2024; Verma et al.,
2019). Further details are provided in Appendix B.

4.2 TImplementation Details

We employ GPT-40 for chain-of-thought rea-
soning. For the CLIP (Radford et al., 2021)
, LLM2Vec (BehnamGhader et al., 2024), T5
(Raffel et al., 2020) , and MusicGen (Copet
et al., 2023) models, we use the "clip-vit-base-
patch32*", "LLLM2Vec-Meta-Llama-3-8B-Instruct-
mntp™", "T5-base*", and "musicgen-large’" ver-
sions, respectively. The MLP model is trained
for 65 epochs using the AdamW optimizer with
a constant learning rate of 5e-4, a batch size of
256 embedding pairs, and a dropout rate of 0.2
for regularization. For the EmbedDiff, we ap-

"https://huggingface.co/openai/
clip-vit-base-patch32

Thttps://huggingface.co/McGill-NLP/
LLM2Vec-Meta-Llama-3-8B-Instruct-mntp

ihttps://huggingface.co/google—tS/tS—base

§https://huggingface.co/facebook/
musicgen-large
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Method FD| FAD| KL| IBST EMS| P@10f OQLT COV{
GT 0.000  0.000 0.000 0217 2587 / 7143 69.11
I-caption2music 61.834 6447 2041 0.132 4.679 2084 39.85 41.46
CoDI (Tang etal., 2024)  156.744 18.763 5.854 0.114 4785 1537  29.95 31.12
M2UGen (Liu et al., 2023) 61.445 7213 1987 0.179 3.814 24.61 5590 54.41
CoT-VTM 43.946  4.606 1.610 0.194 2473 29.84 60.09 58.49

Table 1: Comparison of objective and subjective evaluation metrics for different models in the I2M task. Lower
values for FD, FAD, KL and EMS are better, while higher values for P@ 10, OQL, and COV are better.

ply a cosine noise schedule with 1000 diffusion
steps during training and 200 steps during infer-
ence. The EmbedDiff converges after 72 epochs,
using the AdamW optimizer with a learning rate
of le-4, a batch size of 256 embedding pairs, and
a dropout rate of 0.1 for classifier-free guidance.
Both MLP and EmbedDiff models are trained on a
single NVIDIA RTX A6000 GPU.

4.3 Evaluation

Objective Evaluation We evaluate performance
based on two aspects: music quality and its rel-
evance to the visual data. For music quality, we
employ Fréchet Distance (FD), Fréchet Audio Dis-
tance (FAD) (Kilgour et al., 2018), and Kullback-
Leibler Divergence (KL) to assess both the over-
all quality and variability of the generated audio.
For music-visual alignment, we use the ImageBind
Score (IBS) (Girdhar et al., 2023) to evaluate the
correspondence between video and generated mu-
sic. However, we acknowledge that IBS has limi-
tations, as it was not specifically trained on music
data. To enhance our assessment of the music-
visual connection, we also consider the emotional
matching metric emotion matching score (EMS)
and the music retrieval metric P@ 10, with further
details provided in Appendix D.

Subjective Evaluation Subjective evaluation is
conducted via a questionnaire distributed to 16 non-
experts and 12 graduate students specializing in
music. To minimize bias, we select images and
videos from a variety of scenes and generate music
for each visual using different models. The order of
music corresponding to each visual is randomized.
Participants are asked to rate the generated music
based on overall quality (OQL) and relevance to
the corresponding visual content (COV), using a
scale from 1 to 100. The questionnaire includes
18 samples and takes approximately 10 minutes to
complete. To assess the reliability of human evalu-
ations, we measured inter-annotator agreement us-

ing Fleiss’ Kappa, a standard metric for evaluating
consistency among multiple raters. Given the sub-
jective nature of our evaluation criteria—OQverall
Quality of the generated music (OQL) and Con-
sistency with the visual content (COV)—we dis-
cretized the 1-100 rating scale into ten bins (e.g.,
[1-10], [11-20], ..., [91-100]) before computing
agreement scores.

Models To assess the effectiveness of our model
in capturing the intricate relationships between vi-
suals and music, as well as generating high-quality
music, we conduct experiments for both image-to-
music (I2ZM) and video-to-music (V2M) tasks. For
the 12M task, there is currently no direct method
for generating music from images. CoDi (Tang
et al.,, 2024) is an any-to-any generation model,
and M2UGen (Liu et al., 2023)leverages a LLM
to bridge vision and language. Both CoDi (Tang
et al., 2024) and M2UGen (Liu et al., 2023) serve
as baselines for the I2M and V2M tasks. For the
V2M task, strong baselines include (Lin et al.,
2024; Su et al., 2024). However, these models
have not released their training or inference code
or datasets. Other approaches, such as (Di et al.,
2021; Kang et al., 2024; Zhu et al.; Yu et al., 2023)
are excluded from comparison due to differences
in scope (e.g., symbolic music generation or dance-
to-music), which would make the comparison un-
fair. VidMuse (Tian et al., 2024), currently the
state-of-the-art (SOTA) in open-source video-to-
music, is included as a strong baseline. Addition-
ally, we introduce two simple baselines for [2M
and V2M: I-Caption2music and V-Caption2music.
I-Caption2music uses BLIP (Li et al., 2022) to ex-
tract image captions and generates music by feed-
ing them into MusicGen (Copet et al., 2023). V-
Caption2music uses SpaceTimeGPT! to extract
video captions and generates music similarly by
feeding them into MusicGen.

Thttps://huggingface.co/Neleac/SpaceTimeGPT
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Method FD, FAD, KL| IBStT P@107 OQLtT COVt
GT 0.000 0.000  0.000 0.235 / 76.43 74.88
V-Caption2music 55.332  5.638 1.333  0.182 22.46 43.12  50.10
CoDI (Tang et al., 2024) 120.942 14.340 3.218 0.129 17.53 3176  34.22
M2UGen (Liu et al., 2023)  60.435 6.811 1462 0.183 26.43 57.84 5447
VidMuse (Tian et al., 2024) 42.832 4481 1.194 0.199 30.87 56.35 61.10
CoT-VIM 34.004  4.037 1.212  0.210 31.46 63.44  60.89

Table 2: Comparison of objective and subjective evaluation metrics for different models in the V2M task.

Group OoQL Cov
Non-experts 0.29 0.32
Music specialists 045 0.41

Table 3: Fleiss’ Kappa scores for inter-rater agreement
across different annotator groups.

4.4 Results

To account for domain expertise, we report Fleiss’
Kappa scores separately for non-experts and grad-
uate students specializing in music. As shown in
Table 3, music specialists achieved notably higher
agreement than non-experts, suggesting that do-
main knowledge leads to more consistent and reli-
able evaluations. These findings are consistent with
prior observations in video-music research, where
annotations from user-generated platforms such as
YouTube or TikTok often exhibit high variance due
to personal preference.

Table 1 and Table 2 display the performance
of various models on the I2M and V2M tasks, re-
spectively. For the I2M task, the proposed method
outperforms all other models in both objective and
subjective metrics. For the V2M task, although
our method slightly lags behind VidMuse(Tian
et al., 2024) in certain metrics, it achieves the best
overall performance across the baselines. Specif-
ically, in terms of music generation quality, our
method yields slightly higher KL scores than Vid-
Muse(Tian et al., 2024), but achieves better results
on objective metrics such as FD and FAD. To as-
sess the significance of this improvement, we con-
ducted a paired t-test on FD between our method
and VidMuse(Tian et al., 2024). The test yielded a
t-statistic of -9.57 and a p-value of 5.16x% 1076,
which is well below the standard threshold of
0.05, confirming that the improvement is statis-
tically significant. Regarding music-video rele-
vance, our method performs slightly worse than
VidMuse(Tian et al., 2024) in the subjective metric
COV. We attribute this to the fact that our model

emphasizes global relationships between visuals
(including both images and videos) and music,
whereas VidMuse(Tian et al., 2024) relies more
heavily on temporal visual transformations, which
limits its generalizability to I2M tasks. Overall, the
results demonstrate that our method not only gener-
ates higher-quality music but also exhibits stronger
global visual-to-music correspondence.

4.5 Ablation

First, we replaced the EmbedDiff model with an
MLP model within the original CoT-VTM frame-
work to evaluate whether the EmbedDiff model
offers a better mapping. Next, we trained an Em-
bedDiff model using only visual and music embed-
dings as supervision to map the visual embeddings
to music embeddings. In other words, we aban-
doned the latent embedding in this experiment to
assess whether the intermediate reasoning latent
information enhances the mapping process.

As shown in Table 4, replacing the EmbedDiff
model with the MLP model resulted in a significant
decline in music generation quality, although the
ImageBind score (which evaluates relevance) im-
proved. We believe this is due to the MLP model’s
discriminative nature, which imposes stricter con-
straints on music generation. This improves rele-
vance but limits music quality and diversity. No-
tably, other relevance metrics did not improve;
in fact, the COV metric decreased substantially.
We attribute this to the decline in music quality,
which negatively affects human auditory percep-
tion, thereby reducing the observed relevance. Con-
sequently, EmbedDiff, as a generative model, is
better suited for the V2M task. Abandoning latent
information resulted in performance degradation
across all metrics, highlighting the critical role of
latent information in learning the visual-to-music
mapping. This also provides preliminary evidence
that our model effectively utilizes CoT’s reasoning
capabilities.
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Method FD| FAD| KL| IBST P@107f OQLT COV'
ve—rmlp—le—mlp—me 44.896 4.887 1310 0231 3144 4533 55.64
ve—EmbedDiff—me 36.966 4264 1222 0.199 2462 6034  54.82
ve—smlp—le—EmbedDiffsme 34.004 4.037 1212 0210 3146 6344  60.89

Table 4: ve—mlp—1le—mlp—me is used to validate the advantages of the generative mapping module EmbedDiff;
ve—EmbedDiff—me verifies the facilitative effect of latent information on the visual-to-music mapping.

Method FD,

FAD| KL| IBST P@10T OQLT COV{ Inference timel

Memory,|

LLM2music 36.463 4.293 1.294 0.202 27.55 64.00 59.83

14.04s + (4.99s) 145.87G + (8.07G)

CoT2music 32.426 3.941 1.213 0.219 32.68 6546 64.46 81.34s+(4.99s) 145.87G + (8.07G)

CoT-VIM

33.876 4.069 1.212 0.209 32.14 64.51

61.14 2.33s+(4.99s) 1.73G + (8.07G)

Table 5: Comparison of visual-to-music generation methods. CoT2music verifies the role of Chain-of-Thought
reasoning in the mapping process, while CoT-VTM demonstrates its distilled reasoning capability with substantially

lower inference cost.

To further investigate whether our model fully
capitalizes on chain-of-thought reasoning, we con-
ducted two experiments. In the first experiment,
SpaceTimeGPT generates captions for videos, fol-
lowed by a non-CoT prompt guiding a LLM to
generate music descriptions based on the captions.
These descriptions are then used to prompt Music-
Gen (Copet et al., 2023) to generate audio. The sec-
ond experiment is similar, but replaces the non-CoT
prompt with our carefully designed CoT prompt.
For simplicity, we refer to these experiments as
LLM2Music and CoT2Music, respectively.

From the results in Table 5, we observe that
CoT2Music substantially outperforms LLM2Music
in overall performance, demonstrating the impor-
tance of utilizing CoT’s reasoning abilities for map-
ping visual to music. CoT-VTM achieves compara-
ble performance to CoT2Music while substantially
reducing inference time and GPU memory usage.
Since our distillation focuses solely on the high-
level mapping from visual representations to mu-
sic representations, excluding the audio decoding
stage, we report efficiency metrics for this com-
ponent. The additional cost of downstream music
generation using MusicGen is reported separately.
These results demonstrate that CoT-VTM success-
fully distills CoT reasoning into a compact and ef-
ficient model, delivering significant computational
savings with minimal impact on performance.

5 Conclusion

In this work, we introduced CoT-VTM, a frame-
work that leverages CoT reasoning to address
open-domain VTM without relying on large-scale
paired datasets. By integrating latent information

from CoT as supervisory signals, our two-stage
approach—using MLP for visual-to-latent map-
ping and EmbedDiff for latent-to-music genera-
tion—efficiently produces high quality and seman-
tically aligned music. Experimental results show
that CoT-VTM outperforms existing models in both
image-to-music and video-to-music tasks, provid-
ing a scalable and data-efficient solution for VTM.
This work demonstrates the potential of CoT rea-
soning in bridging visual and musical domains,
advancing cross-modal generation tasks.

Limitations

The current limitations of the CoT-VTM frame-
work are two fold. First, since CoT-VTM relies on
pre-trained text-to-music models, the quality of the
generated music is constrained by the performance
of these models. Second, our current focus is on
visual-to-music mapping (including both images
and videos), without addressing the temporal con-
sistency between visuals and music, especially for
video data.

In future work, we will explore how to apply
the Chain-of-Thought reasoning ability of LLMs
to visual-to-music mapping without relying on pre-
trained text-to-music models. Additionally, we aim
to investigate how to leverage this reasoning ability
to generate music that aligns with the temporal
changes in video content.
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A More Details about CoT prompt

As shown in Figure 1, the overall structure and
components of the CoT prompt are illustrated. Be-
low shows the detailed contents of the different
sections within the CoT prompt.

A.1 The content of CoT prompt

Your task is to generate a textual description of
background music that matches the scene depicted
in the image. Since there is no direct correspon-
dence between the visual and music domains, the
task must be broken down into steps for structured
output. Follow these instructions:

Step 1: Based on the scene description, analyze
the following visual elements:

* Object: Identify the objects present in the
scene that might influence the music (e.g., an-
imals, people, trees, etc.).
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¢ Emotion: What emotions does the scene
evoke (e.g., tranquil, joyful, energetic)?

* Dynamic: What is the overall dynamic of the
scene (e.g., calm, energetic, fast-paced)?

¢ Color: What is the dominant color or color
scheme (e.g., warm tones, cool tones)?

Step 2: Based on the visual elements extracted in
Step 1, analyze the corresponding music elements:

* Genre: Suggest an appropriate music genre
(e.g., melodic, classical, upbeat, electronic).

 Instruments: List the instruments that suit
the atmosphere (e.g., piano, guitar, strings,
electronic sounds).

¢ Emotion: What emotion should the music
evoke (e.g., peaceful, joyful, energetic)?

* Rhythm: Describe the tempo and pacing
of the music (e.g., slow, fast, syncopated,
steady).

Step 3: Based on the musical elements extracted
in Step 2, synthesize and generate the final music
description.

Output Format: Provide the final output in JSON
format as follows:

{

"image_description”: "<input description>"

"stepl reasoning"”: "<reason>",

"visual elements”: {
"object”: "<object description>",
"emotion”: "<emotion description>",
"dynamic": "<dynamic description>",
"color”: "<color description>"

IS

"visual description”: "<visual description>"

"step2 reasoning"”: "<reason>",
"music elements”: {
"genre": "<genre>",
"instruments”: ["<instrument1>", ..
"emotion”: "<emotion>",
"rhythm”: "<rhythm>"
1,
"step3 reasoning"”: "<reason>",
"music description”: "<music description>"

}

.1,

A.2 The role of each section in the CoT
prompt

The expert role section P,y defines the model’s
professional identity and task scope, specifying that
the model’s role is to analyze images and create
background music, guiding it to perform precise
reasoning and generation within this specific do-
main. The task objective section Py, sets the core
goal of the task to generate a matching background
music description based on the visual description,
providing the model with a clear target and guid-
ance. The process decomposition section Fgeps
breaks down the overall task into three reasoning
processes, with each step specifying the operations
to be performed, ensuring the model can progres-
sively analyze the image and generate the corre-
sponding music description, enhancing task effi-
ciency and accuracy. The output example section
Peyample provides an input-output instance in the
form of a tuple Question, Rationale, Answer >,
giving the model a clear reasoning process and out-
put format, ensuring that the generated result meets
the expected format, is practically applicable, and
maintains consistency and standardization for sub-
sequent information extraction. Finally, the visual
caption section X,; serving as the basis for the
model’s reasoning.

A.3 CoT sample

The following content includes CoT-generated sam-
ples: Image Description: A child holds a bright
red balloon, standing at the edge of a calm lake.
The balloon sways gently in the breeze, reflecting
‘the afternoon sun.

Step 1 — Visual Reasoning: The visual scene
evokes a peaceful, serene atmosphere. The pres-
ence of the child with the bright red balloon sug-
gests innocence and joy, while the calm lake and
gentle breeze further add to the tranquility of the
moment.

"Extracted Visual Elements:

* Objects: A child, a bright red balloon, calm
lake

* Emotions: peaceful, joyful, serene
* Dynamics: calm, gentle

* Colors: warm tones (afternoon sun), bright
red balloon
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Visual Scene Description: The scene depicts a
child standing by the lake, holding a bright red bal-
loon. The lake is calm, and the soft breeze makes
the balloon sway gently. The warm afternoon sun
adds a golden glow to the surroundings, creating a
peaceful and joyful atmosphere.

Step 2 — Music Reasoning: The serene and joy-
ful atmosphere of the visual scene suggests music
that is peaceful yet uplifting. The gentle movement
of the balloon and the calmness of the lake call for
slow-paced, melodic music. The bright red balloon
indicates a sense of lightheartedness and innocence,
which can be reflected in the choice of instruments.

Predicted Music Elements:

¢ Genre: melodic, acoustic

* Instruments: piano, strings, acoustic guitar
* Emotions: peaceful, joyful

* Rhythm: slow, steady, gentle

Step 3 — Music Reasoning Refinement: The
combination of a peaceful, calm scene with a sense
of joy and innocence calls for music that comple-
ments the tranquility of the lake while still cap-
turing the lighthearted joy of the child with the
balloon. The melody should be soothing, with gen-
tle instrumentation to reflect the overall dynamic
of the scene.

Generated Music Description: A soft piano
melody with light string harmonies, accompanied
by gentle acoustic guitar strumming, creating a
peaceful and warm atmosphere with a slow, steady
rhythm.

B More Details about dataset

B.1 The rationale for selecting these datasets

The first part includes text-image and text-video
paired data (Srinivasan et al., 2021; Wang et al.),
with 10k samples each. The second part is based
on the Emoset (Yang et al., 2023) image sentiment
classification dataset, which results in 11k text-
image pairs generated using the Qwen2-vl (Wang
et al., 2024) for image annotation. The third part
consists of 10k textual descriptions of visual scenes,
generated using carefully designed prompts with
the GPT-40 API. We chose the first part, text-image
and text-video paired data (Srinivasan et al., 2021;
Wang et al.), to provide high-quality visual-text

pairings for the dataset. Although the CLIP model
effectively encodes both visual and textual informa-
tion into a shared space, a gap remains between the
visual and textual modalities. By incorporating this
data, we aim to mitigate the errors introduced by
the modality gap during the training process. We
chose the second part of the data (Yang et al., 2023)
based on the fact that one of the most prominent
features linking visual content to music is emotion.
This choice allows the model to better capture the
emotional connection between visuals and music.
The third part of the data was chosen to address a
potential limitation in the visual-text annotations of
the first two datasets, where the information may
be insufficient. Simple semantic annotations could
leave too much room for interpretation, making it
difficult for the model to converge. Therefore, it
is essential to leverage large language models to
generate diverse, visually rich scene descriptions
that provide more detailed and comprehensive in-
formation.

B.2 Data generation prompt

To ensure the generated data has diversity, we com-
bine different variables by generating reasonable
prompts, which are then used to create visual text
descriptions. Below are some template instructions
and variables.

Variable Templates

Single Variable Templates
* Describe an image of a natural_scenarios.
* Imagine a urban_scenarios scene.

* Create a detailed description of an
indoor_scenarios setting.

* Describe a scene that takes place during
time_periods.

* Illustrate an image showcasing the seasons
season.

* Imagine an image set in a holidays celebra-

tion.
* Describe a vivid picture with
excited_behaviors.
* Imagine a melancholy scene with

sad_behaviors.

* Create an image
angry_behaviors.

focusing on

12506



Describe a
lonely_behaviors.

scene conveying

Imagine an image where someone is display-
ing confident_behaviors.

Describe an artwork using tonalities tones.

Create a picture that conveys a atmospheres
mood.

Double Variable Templates

Describe a seasons landscape with animals
moving through it.

Imagine a serene scene
with calm_behaviors and
outdoor_natural_objects.

Describe a  vivid image featuring

confident_behaviors and tonalities

shades.

Ilustrate a urban_scenarios environment
during holidays.

Create a peaceful image showing
natural_scenarios and atmospheres.

Describe  a  bustling scene  fea-
turing urban_scenarios and
character_actions.

Imagine an emotional setting with
character_emotions and sad_behaviors.

Variable

L]

Natural Scenarios:

— forest, tropical rainforest, mountain
range, desert, beach, river, lake, water-
fall, grassland, canyon,

— wilderness, plateau, glacier, snowy
mountains, hot springs, swamp, cave,
volcano, cliff, sand dunes,

— woodland, deep canyon, island in lake,
sinkhole, flower field, orchard, rice field,
terraced fields, bamboo forest, hills,

— polar regions, aurora zone, seabed, coral
reef, hot springs pool, stonehenge, beach
rocks, mangrove forest, tundra, great
plains,

— valley, subtropical forest, vast wasteland,
wetland, riverbank, mountain stream,
primitive forest, beach palm trees, wilder-
ness under the stars, path by the stream
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¢ Urban Scenarios:

— city street, square, shopping mall, park,
subway station, train station, airport, res-
idential area, commercial street, pedes-
trian street,

— skyscraper, office building, restaurant,
cafe, bar, museum, theater, cinema,
school, library,

— hospital, clinic, police station, stadium,
amusement park, swimming pool, bus
stop, bridge, dock, harbor,

— vegetable market, night market, ancient
city wall, open-air market, sculpture
square, parking lot, night city lights, bus
cabin, residential balcony, city skyline,

— interchange bridge, clock tower, city tun-
nel, scenic street, commercial building,
station waiting room, smart city cor-
ner, city rooftop garden, music fountain
square, riverbank at night

e Indoor Scenarios:

— bedroom, living room, kitchen, bath-
room, study, dining room, office, con-
ference room, laboratory, classroom,

— library, theater, cinema, gym, swimming
pool room, music room, dance room,
yoga studio, cafe, restaurant,

— game room, children’s playroom, mall,
gallery, museum, pet store, storage room,
basement, attic, clinic,

— waiting room, hospital ward, pharmacy,
beauty salon, barbershop, hot spring
room, garage, archive room, bookstore,
hotel lobby,

— hotel room, private cinema, photography
studio, recording studio, greenhouse, ex-
hibition hall, pet clinic, operating room,
BBQ room, banquet hall

To ensure that the generated visual text descrip-
tions contain rich visual details, we provide sample
visual descriptions.

Example

* A broad, open field extends to the horizon,

dotted with patches of wildflowers. A gentle
breeze moves through the tall grasses, creating
ripples across the landscape.



* A vast mountain range stretches across the
horizon, its jagged peaks touching the sky.
The landscape is bathed in the warm glow of
the setting sun, casting long shadows over the
valleys below.

* A fluffy gray cat’s paws rest gently on the
windowsill, its claws just visible. The rain
outside drizzles down the window, with tiny
droplets clinging to the glass.

» A white ceramic coffee cup sits on a wooden
table, steam rising from the dark liquid inside.
The sunlight reflects off the surface, casting a
soft glow on the cup’s edge.

* The vast ocean stretches out as far as the eye
can see, crashing against the rocky cliffs be-
low. The waves shimmer under the midday
sun, and seagulls circle high above.

* A hand grips a fountain pen, the ink flowing
steadily onto a piece of paper. The fingers,
slightly aged, press gently against the smooth
surface, leaving a dark trail behind.

Result

* An empty wooden bench sits beneath a tall
oak tree, surrounded by fallen leaves. The
sunlight filters through the branches, casting
dappled shadows on the ground.

* A child holds a bright red balloon, standing at
the edge of a calm lake. The balloon sways
gently in the breeze, reflecting the afternoon
sun.

* Snowflakes fall gently on a quiet street, cover-
ing parked cars and sidewalks in a soft white
blanket. The streetlights glow faintly in the
misty evening air.

* A lighthouse stands tall on a rocky shore, its
beam of light cutting through the dark night.
The waves crash below, sending sprays of wa-
ter high into the air.

* A couple walks along a cobblestone path,
lined with lanterns glowing softly in the night.
The path winds through an ancient village, its
buildings covered in ivy.

* The glowing embers of a campfire flicker
against the dark forest. Shadows dance on
the nearby trees as sparks rise into the cool
night air.

B.3 The Details of evaluation dataset

To effectively evaluate the performance of differ-
ent models in generating music based on visual
content in an open visual domain, we considered
potential biases in existing datasets. For instance,
the URMP (Li et al., 2018) dataset is biased to-
wards performance videos, SymMV (Zhuo et al.,
2023) has a strong MV style, and TikTok (Zhu
et al., 2022a) predominantly feature human sub-
jects. Therefore, we extracted a portion of data
from various datasets to create a combined eval-
uation set that better aligns with the open visual
domain setting.

Specifically, for the V2M task, we selected 44
samples from the URMP dataset (Li et al., 2018),
100 samples each from the BGM909 (Li et al.,
2024), SymMV (Zhuo et al., 2023), AIST++(Li
et al.,, 2021), and TikTok (Zhu et al., 2022a)
datasets, and then cropped the selected samples
into 10-second segments. The final dataset con-
tains a total of 2,600 samples.

For the 12M task, we applied a similar method,
selecting samples from these datasets and ran-
domly choosing keyframes. Given the potential
weak correlation between images and music, we
also included 1,000 image-music pairs from the
IMAC (Verma et al., 2019) dataset, where emotion
serves as the linking factor, to enhance the evalua-
tion.Below is a summary of the datasets used:

« URMP(Li et al., 2018): A dataset for multi-
modal analysis of music performances, con-
taining 44 classical music pieces. Each piece
is assembled from separately recorded tracks
of different instruments that are temporally
aligned.

e SymMV (Zhuo et al., 2023): This dataset in-
cludes 1,140 video-music pairs, where the mu-
sic consists of piano covers of popular songs
and the videos are the corresponding official
music videos. It spans over 10 music genres
and is carefully curated from online sources.

* BGM909(Li et al., 2024): A dataset contain-
ing 909 piano pieces paired with well-aligned
videos. All video-music pairs are manually
edited to ensure perfect temporal and semantic
alignment.

o AIST++(Lietal., 2021): A large-scale dataset
focusing on street dance videos paired with
copyright-cleared dance music. It is designed
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to support research in dance information pro-
cessing and is the first of its kind.

TikTok(Zhu et al., 2022a): A collection of
short (10-15 second) dance videos sourced
from TikTok. It includes a wide variety
of dance styles, clothing, expressions, and
performer demographics. We manually cu-
rated over 300 single-person dance clips from
monthly challenge compilations.

e IMAC(Verma et al., 2019): A labeled dataset
capturing affective correspondence between
images and music, useful for evaluating cross-
modal emotion alignment.

C More Details of the theoretical proof of
feasibility

Referring to (Qiao et al., 2022), we define the fol-
lowing notations: question (), prompt 7', proba-
bilistic language model py s, and answer A. In
the standard one-shot prompt setup, the prompt 7T,
consists of an instruction [ and a single question-
answer pair. The large language model (LLM)
takes the question () and the prompt 7" as input and
generates the answer A, as shown in Equation:

Tsp = {1, (71,y1)} 7
|4

p(AT,Q) =][pemlai| T,Q az) (18)
i=1

In a one-shot CoT prompt setting, the prompt 1o
includes instructions, questions, answers, and ratio-
nales. Instead of directly generating the answer, the
model first produces a step-by-step reasoning pro-
cess R, followed by the final answer A, as shown
in the following equation:

Teor = {1, (z1,e1,y1)} (19)

P(AR|T,Q) =pA[T,QR)-p(R|T,Q)

(20)
|R|
p(R|T.Q) =]]pem(ri | T,Qr<i) @1
=1
[A]
p(A | T,Q, R) = HpLM(aj | T,9,R, a<j)
=1
’ 22)

We adapt the CoT methodology by introducing
E,. into the video-to-music mapping. Here, F,
corresponds to 7 and Q in the CoT reasoning, F,,
corresponds to the answer A, and FE,. corresponds
to the reasoning R:

P(Em7E7“ ‘ Ev) = P(Em ‘ EraEv) P(ET’ ‘ EU)

(23)
The original VTM modeling is therefore trans-
formed as follows:

En~P(E, | E.E,) -P(E.|E,) (24)

D More Evaluation Details

D.1 Explanation of Evaluation Metrics

FD measures the distance between the embed-
ding distributions of synthesized and real samples.
While FD uses PANNs (Kong et al., 2020) for em-
bedding extraction, FAD utilizes VGGish (Hershey
et al., 2017). KL calculates the divergence between
the class outputs of generated and real music.

For the EMS metric, similar to the approach in
(Wang et al., 2023), we first use the IMEMENT
dataset with continuous VA emotional annotations.
We begin by encoding the data into embedding
representations using a pre-trained MERT (Li et al.,
2023) model and the CLIP (Radford et al., 2021)
model. Then, two separate multilayer perceptrons
are trained to predict the VA values for music and
video. The EMS metric is subsequently calculated
based on these predictions:

sim(z, ) = /(v — 1) + (az — a,)2) (25)

For the P@ 10 metric, we adopt the approach de-
scribed in [ ]. Given a piece of generated music and
its corresponding ground-truth music for the con-
dition video , we randomly select 69 music pieces.
The MERT model (Li et al., 2023) is employed
to extract the music features for each generated
sample. If the ground-truth music ranks within
the top-10, we consider it a successful retrieval.
The final precision score, P@10, is calculated by
evaluating the successful retrieval rate across all
generated samples.

E More Details of the experiments

Distilling CoT into M2UGen. We fine-tuned
M2UGen with our CoT-generated supervision for
comparison. The results, shown in Table 7, in-
dicate that the fine-tuned M2UGen achieves per-
formance close to CoT-VTM across most metrics,
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demonstrating the effectiveness of our distilled CoT
knowledge. However, due to M2UGen’s reliance
on a large LL.M-based pipeline, its inference time
and memory consumption are substantially higher
than those of CoT-VTM, limiting its practicality
for efficient deployment.

Replacing CLIP with ImageBind. We investi-
gated replacing the CLIP text encoder with Image-
Bind, a more powerful cross-modal encoder with
longer input tolerance and stronger multi-modal
alignment. As Table 6 shows, ImageBind improves
both generation quality and alignment metrics com-
pared to CLIP. This result validates that our frame-
work supports flexible encoder substitution and
benefits from stronger visual-text grounding.

Encoder  FD| FAD| KL| IBST P@10}
ImageBind 33.764 3.979 1208 0223 33.78
CLIP 34.004 4.037 1212 0210 31.46

Table 6: Comparison between CLIP and ImageBind as
visual encoders in our framework. ImageBind shows
consistent improvements across all metrics.

Method FD| FAD| KL| P@107 Inference

M2UGen 34.764 4.179 1.218 29.78 9.74s + (4.99s)
CoT-VIM 34.004 4.037 1212 3146 2.33s+ (4.99s)

Table 7: Comparison between M2UGen with CoT super-
vision and CoT-VTM. CoT-VTM achieves comparable
performance with substantially lower inference cost.
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