
Automatic Joint Structured Pruning and Quantization for Efficient Neural
Network Training and Compression

Xiaoyi Qu2, David Aponte1, Colby Banbury1, Daniel P. Robinson2, Tianyu Ding1, Kazuhito Koishida1, Ilya Zharkov1, Tianyi Chen1*

Microsoft1, Lehigh University2

xiq322@lehigh.edu, Tianyi.Chen@microsoft.com

Abstract

Structured pruning and quantization are fundamental
techniques used to reduce the size of deep neural networks
(DNNs), and typically are applied independently. Applying
these techniques jointly via co-optimization has the poten-
tial to produce smaller, high-quality models. However, ex-
isting joint schemes are not widely used because of (1) engi-
neering difficulties (complicated multi-stage processes), (2)
black-box optimization (extensive hyperparameter tuning to
control the overall compression), and (3) insufficient ar-
chitecture generalization. To address these limitations, we
present the framework GETA, which automatically and effi-
ciently performs joint structured pruning and quantization-
aware training on any DNN. GETA introduces three key
innovations: (i) a quantization-aware dependency graph
(QADG) that constructs a pruning search space for generic
quantization-aware DNN, (ii) a partially projected stochas-
tic gradient method that guarantees layerwise bit con-
straints are satisfied, and (iii) a new joint learning strategy
that incorporates interpretable relationships between prun-
ing and quantization. We present numerical experiments
on both convolutional neural networks and transformer ar-
chitectures that show that our approach achieves competi-
tive (often superior) performance compared to existing joint
pruning and quantization methods. Source code is available
at https://github.com/microsoft/GETA.

1. Introduction
Deep neural networks (DNNs) have been widely used

in various applications [26, 34, 36, 56]. However, their in-
creasing size has raised several concerns. One major chal-
lenge is the substantial storage space required to hold these
models, which can be impractical for everyday devices such
as standard PCs and even more so for resource-constrained
edge devices [50]. Furthermore, as model sizes increase,
inference cost often lengthens, leading to delays that can

*Corresponding Author.

be frustrating for users who expect quick responses. There-
fore, it is of practical interest and importance to compress
the model while maintaining performance similar to the full
model. To address the above concerns, various model com-
pression techniques have been studied in recent years [14].

Pruning and quantization are two fundamental tech-
niques that are widely deployed, each following different
methodologies. Structured pruning is perhaps the most
popular pruning scheme, which aims to remove redundant
structures in DNNs while preserving performance [10, 18].
Quantization reduces the bit width of the data flowing
through a DNN [14]. In practice, structured pruning is typi-
cally applied first to identify a high-performing subnetwork,
which is then quantized to further reduce its size and en-
hance its processing speed on specified hardware [23, 42].
However, treating pruning and quantization separately has
limitations. For example, more heavily structurally pruned
models are typically more sensitive to quantization and thus
require higher bit widths. Thus, joint structured pruning and
quantization becomes an important topic.

1.1. Challenges

Many studies [3,23,29,37,42,47,52,55,58,61,64] have
combined pruning and quantization to obtain high compres-
sion ratios. However, these joint methods are not commonly
used in practice due to one or more of the following reasons:
engineering difficulty, black-box optimization, and insuffi-
cient architecture generalization, which we now discuss.
Engineering Difficulties. First, many joint pruning and
quantization methods follow a two-stage process. For ex-
ample, [52, 55, 58, 61] first determine the configurations
(pruning ratio and bit width) for each layer of the network,
and then train the pruned and quantized model. They re-
quire separate compression and retraining stages since the
two stages may be incompatible with each other. Thus, two-
stage pipelines increase the execution time, especially for
large datasets (e.g., ImageNet). For these reasons, a one-
shot (all-at-once) framework is preferred. Second, while re-
cent automated structured pruning frameworks propose de-
pendency graphs to support generic architectures [11, 18],

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

15234

mailto:xiq322@lehigh.edu
mailto:Tianyi.Chen@microsoft.comu
https://github.com/microsoft/GETA

Full Model

Relu

ReluReluReluRelu

BN

QConv1 QConv2

ReluBNRelu

ReluReluReluRelu

BN

Conv1 Conv2

ReluBN

Linear

and Dependency
Graph Analysis

Add
Parameterized
Quantization

Layer

Quantization-Aware Dependency Graph

PPSG

Quantization-Aware
Structured Sparse

Optimizer

QLinear

Compressed Model

Prune

Quant

Figure 1. GETA framework pipeline. Nodes Conv1 and Conv2 represent two convolutional layers, node BN represents batch normaliza-
tion, and the “+” represents summation. For details on the remainder of the figures, see Sec. 3–Sec. 5.

integrating quantization introduces new challenges. The ad-
dition of attached and inserted branches in the trace graph,
which are not accounted for in existing dependency graph
analyses, breaks the supports for any architecture.

Black-box Optimization Process. A significant portion
of existing methods lack explicit control over sparsity and
bit width during the optimization process. This limitation
arises from the multi-objective nature of joint compres-
sion problems, which require balancing conflicting goals:
maintaining model performance while maximizing sparsity
and minimizing bit width. Approaches such as DJPQ [58],
BB [55], and Clip-Q [52] often tackle this challenge by in-
troducing regularization coefficients to reconcile conflicting
objectives. However, a significant drawback is their inabil-
ity to predict the final compression ratio of the model prior
to executing the entire optimization process. Consequently,
users typically require extensive hyper-parameter tuning ef-
forts, limiting flexibility and productivity in practice.

Insufficient Architecture Generalization. The existing
work [3,37,47,52,55,58,61] on joint structured pruning and
quantization focuses primarily on the convolutional neural
network (CNN), and cannot be applied to architectures such
as transformers. For instance, both DJPQ [58] and BB [55]
applies per-channel pruning to each layer, which will not
work for multi-head attention in transformers because it ig-
nores the dependencies between different attention heads.

Table 1. GETA versus representative joint pruning and quanti-
zation methods in terms of (i) whether the method supports struc-
tured pruning, (ii) whether it is a one-shot approach, (iii) whether it
is a white-box approach, and (iv) whether it can be used on a vari-
ety of network architectures and tasks (i.e., generalization). Meth-
ods not listed lack one or more of these properties.

GETA BB DJPQ QST Clip-Q ANNC
Structured Prune† ✓ ✓ ✓ ✗ ✗ ✗

One-shot† ✓ ✗ ✗ ✓ ✓ ✗
White-box Optimization ✓ ✗ ✗ ✓ ✗ ✓
Generalization ✓ ✗ ✗ ✗ ✗ ✗
† Categorized into engineering difficulties.

1.2. Our Contributions
Framework Usage

1 import GETA
2 # General DNN model
3 geta = GETA(model)
4 optimizer = geta.qasso()
5 # Train as normal
6 optimizer.step()
7 # Quantized Pruned DNN
8 geta.construct_subnet()

To tackle the above
challenges, we propose
GETA, a General and
Efficient Training frame-
work that Automates
joint structured pruning
and quantization aware
training. By streamlining the workflow, GETA signifi-
cantly reduces the engineering burden and minimizes user
intervention (See Framework Usage).

As shown in Fig. 1, GETA begins by incorporating the
parameterized quantization layer [53] into the full model,
which allows for layerwise bit widths to be learned dur-
ing training (see Sec. 3). Next, the framework proposes a
quantization-aware dependency graph (QADG) (see Sec. 4)
to address previously unconsidered graph transformations
introduced by parameterized quantization layers, ensuring
support for any architecture. To train the neural network us-
ing the quantization-aware dependency graph, we employ a
quantization-aware structured sparse optimizer (see Sec. 5)
to determine the optimal tradeoff between the pruning ra-
tio and bit width for each layer. Our main contributions are
summarized as follows.
• Quantization-Aware Dependency Graph (QADG).

We propose the quantization-aware dependency graph
(QADG) to support joint structured pruning and quanti-
zation applied to any quantization-aware deep neural net-
work (QADNN). By eliminating the need to handle each
architecture individually, QADG significantly reduces the
model-specific engineering workloads.

• Quantization-Aware Structured Sparse Optimizer
(QASSO). We propose a quantization-aware structured
sparse optimizer, to provide reliable joint structured prun-
ing and mixed precision quantization-aware training. To
the best of our knowledge, QASSO is the first white-box
joint optimizer that explicitly controls the sparsity ratio
and bit width. Particularly, QASSO employs a partial pro-
jected stochastic gradient (PPSG) method that progres-

15235

sively converges towards the bit width budget for training
stability. Moreover, a joint learning strategy is introduced
to address the conflicts between pruning and quantization
for performance preservation.

• Numerical Verification. We test GETA on a wide range
of neural networks including ResNet, VGG, BERT, Phi2,
and ViT, among others. The results indicate that GETA
achieves competitive (often superior) performance com-
pared to state-of-the-art joint pruning and quantization
methods in terms of performance and bit operations.

2. Related Work
Structured Pruning. Structured pruning aims to remove
redundant structures to reduce the size of DNNs. The iden-
tification of redundancies can be performed based on differ-
ent criteria such as sparsity [5–7,10,20,22,31,38,44,59,62,
68], Bayesian pruning [55, 67]. Previous methods typically
use a complicated, time-costly process that requires domain
knowledge to train the DNN. Another challenge is to define
a pruning search space procedure that can be generalized to
various DNNs. Recent frameworks, such as OTO [9,11,12]
and DepGraph [18], have automated the construction of
this search space using dependency graphs. However, these
methods are not suitable for QADNNs due to prevalent is-
sues such as weight-sharing and shape ambiguous opera-
tors.1 This limitation highlights the ongoing challenge of
automating structured pruning for any QADNN.

Quantization-Aware Training (QAT). The standard ap-
proach to QAT is applying a uniform bit width across all
layers. However, [16, 28] empirically show that different
layers in DNNs exhibit different sensitivities to quantiza-
tion, suggesting that mixed-precision quantization may be
a better approach for reducing performance loss. Several
strategies including parameterized quantizers [53], heuris-
tic approaches [47], reinforcement learning [3, 17], multi-
objective Bayesian optimization [45], and Hessian informa-
tion guided methods [15, 16, 63] have been proposed to de-
termine the optimal bit width for each layer.

Joint Pruning and Quantization. The challenge of us-
ing a joint approach lies in determining an optimal trade-
off between the pruning ratio and quantization levels for
the model. Two primary strategies have been explored
to address this challenge. The first strategy is to effi-
ciently search the joint parameter space with prior work
considering heuristics [47], reinforcement learning [3], and
Bayesian optimization [52]. The second strategy focuses
on gradient-based optimization techniques. [61, 64] formu-
lates a constrained optimization problem and solves it via
alternating direction method of multipliers. However, both
approaches fail to support structured pruning. [40, 55, 58]

1Shape ambiguous operators are operators (e.g., reshape and view in
PyTorch) that transform input tensors into outputs of varying dimensions.

introduces regularization coefficients to balance conflicting
objectives, preserving model performance while reducing
computational burden, which require significant hyperpa-
rameter tuning. [29] proposes a one-shot framework for the
joint compression of DNNs, but it does not support struc-
tured pruning. Unlike these approaches, GETA is a one-
shot, white-box framework that supports joint structured
pruning and quantization by gradient-based optimization.

3. Quantization with Learnable Parameters

Instead of freezing the bit width in standard QAT ap-
proach, we introduce quantization parameters qm, t, and d
to learn the bit width of each layer [54]. In particular, qm
represents the maximum value to be mapped and t is the ex-
ponent controlling the shape of the mapping and d, known
as quantization step size, characterizes the interval between
adjacent quantization levels. For each quantization opera-
tion, we first quantize the input tensor x as x̃ by applying a
nonlinear function [58]

x̃ = sgn(x) ·

{
|x|t, |x| ≤ qm,

(qm)t, |x| > qm.
(1)

After applying the nonlinear mapping, we perform symmet-
ric uniform quantization on x̃, resulting in the mapping

xQ = d⌊x̃/d⌉, (2)

where ⌊·⌉ represents rounding to the nearest integer. The
associated bit width b is computed as

b = log2

(
(qm)t

d
+ 1

)
+ 1. (3)

To optimize quantization variables d, t, and qm, we compute
their gradients using the straight-through estimator [53].
For details of the gradient of the quantization mapping with
respect to d, t, and qm, one can find them at Appendix A.
Remark. The computation involving x in this section rep-
resents element-wise operations.

4. Quantization-Aware Dependency Graph

To automate joint structured pruning and quantization-
aware training, we first establish a pruning search space.
This space is defined as the set of minimally removable
structures within the target DNN, ensuring that the remain-
ing sub-network remains functional post-removal. How-
ever, establishing this search space automatically is chal-
lenging due to the complex topology of DNNs and the di-
verse roles of operators. Recent advancements in depen-
dency graph [11, 18] address some of these challenges, but
existing approaches remain insufficient for QADNN.

15236

Relu

ReluReluReluRelu

QConvQConvQConvQLinear

BN

QConv1 QConv2

ReluBN

Relu

BN

Conv

Relu

BN

QConv

Ambiguous Shape Operator

Linear

QLinear

(a) Weight quantization (b) Activation quantization (c) Quantization-aware
dependency graph

Attached Branch

Inserted
Branch

Figure 2. Figure 2(a) and 2(b) illustrate the Quantization-Aware dependency graph analysis for weight quantization and activation quanti-
zation, respectively. Figure 2(c) presents a dependency graph after QADG analysis. Concrete examples are provided in Appendix F.

To automate the construction of the pruning search space
for QADNN, we construct a Quantization-Aware Depen-
dency Graph (QADG). QADG efficiently captures prun-
ing dependencies across both weight and activation quan-
tization. Challenges arise due to the numerous parameter-
ized layers introduced during layer conversion, which in-
clude weight-sharing and shape-ambiguous layers that pre-
vious algorithms do not account for. Weight and acti-
vation quantization-aware layers exhibit distinct structural
patterns. As shown in Fig. 2(a), weight quantization intro-
duces a prominent attached branch connected to the target
layer. In contrast, activation quantization inserts a set of
layers between the activation layer and its subsequent layer,
referred to as the inserted branch.

Algorithm 1 Constructing a Quantization-Aware Depen-
dency Graph

1: Input: Trace graph (V, E) of QADNN.
2: Initialize: Vweight

root = ∅, Vact
root = ∅, and Vact

end = ∅.
3: Traverse (V, E) and add the root vertex of each attached

branch to the set Vweight
root .

4: for each v ∈ Vweight
root do

5: Find attached branch associated with root vertex v.
6: Merge vertices in attached branch as vertex ṽ.
7: Replace v with ṽ.
8: end for
9: Traverse (V, E) and add the root vertex and end vertex

of each inserted branch to Vact
root and Vact

end, respectively.
10: for each pair (vroot, vend) ∈ Vact

root × Vact
end do

11: Merge vertices between vroot and vend as vertex ṽ.
12: Replace vend with ṽ.
13: Add an edge from vroot to ṽ into E .
14: end for
15: Conduct dependency graph analysis in [11].
16: Output: the QADG obtained from Line 15.

Quantization-Aware Dependency Graph Analysis. To
tackle these challenges, as stated in Algorithm 1, we pro-
pose QADG analysis. At Line 3, we first traverse the trace
graph (V, E) via depth-first search to identify the set of
root vertices, Vweight

root , for weight quantization. An exam-
ple of a root vertex is Conv in Fig. 2(a). We then iden-
tify attached branches, merge them as new vertices, and re-
place the root vertices with these new structures, as speci-
fied at Line 4-Line 8. For activation quantization, we first
locate the root and end vertices, such as Relu and QLinear
in Fig. 2(a). Next, we identify the inserted branches, merge
them as new vertices, and replace the end vertices with these
new structures. To preserve the connectivity of QADNN,
we reconnect the root vertices with the newly formed end
vertices in Line 13. Through this optimization, we con-
solidate complex attached and inserted branches into sin-
gle entities, allowing us to de-duplicate shared weights and
eliminate shape-ambiguous vertices. Subsequently, we ap-
ply the dependency graph analysis from [11] to derive the
QADG, which facilitates the construction of the pruning
search space over the QADNN, enabling joint structured
pruning and quantization-aware training.

5. QASSO
After obtaining a QADG using Algorithm 1, we obtain

the pruning search space of the QADNN, i.e., the parameter
groups G. Each g ∈ G represents the collection of trainable
variables in one minimally removal structure. We then ap-
ply the QASSO optimizer (see Algorithm 2) to the problem

minimize
x∈Rn

(d,qm,t)∈R|L|×R|L|×R|L|

f(x, d, qm, t) (4a)

s.t. Card{g ∈ G|[x]g = 0} = K, (4b)
bi ∈ [bl, bu], i ∈ L, (4c)

where K represents the target sparsity ratio, [bl, bu] speci-
fies the target bit width range, and L denotes the index set

15237

of layers that have parameterized quantization layers added,
and |L| represents the cardinality of set L, and bit width bi
is computed using formula Eq. (3) given in Sec. 3.

Algorithm 2 QASSO

1: Inputs: Initial weight parameters x and quantiza-
tion parameters (d, qm, t), learning rate schedule {αl},
number of warm-up steps Kw, bit width range [bl, bu]
with bu ≥ bl + 1, number of projection periods B ∈
[1, bu − bl], bit width reduction factor br ∈ [1, (bu −
bl)/B], number of projection steps Kb, number of prun-
ing steps Kp, and number of pruning periods P .

2: Perform Kw SGD steps on (4a) to update (x, d, qm, t).
3: for each projection period 0, 1, · · · , B − 1 do
4: bu ← bu − br.
5: for k = 0, 1, · · · ,Kb − 1 do
6: Update x using one step of SGD on (4a).
7: Update (d, qm, t) using Algorithm 3.
8: end for
9: end for

10: for each pruning period 0, 1, · · · , P − 1 do
11: Compute saliency score [12] using x.
12: Compute the set of important groups GI and set of

redundant groups GR using the saliency score.
13: for k = 0, 1, · · · ,Kp − 1 do
14: Update (t, qm) using one step of SGD on (4a).
15: Stochastic gradient ∇̂xf ≈ ∇xf(x, d, qm, t).
16: Compute γ using Eq. (13).
17: Update d with Eq. (14).
18: Compute xQ from Eq. (2).
19: For currently scheduled learning rate α, set

[x]GI
← [x]GI

− α[∇̂xf]GI
and (5)

[x]GR
← [x]GR

− α[∇̂xf]GR
− γ[xQ]GR

. (6)

20: end for
21: end for
22: Fixing the quantization parameters, say (d∗, q∗m, t∗),

computed above, train Eq. (4a) over the weight param-
eters in the set of important groups GI to obtain x∗.

23: Outputs: Parameters (x∗, d∗, q∗m, t∗).

Overview of QASSO. Our framework QASSO (see Al-
gorithm 2) aims to compress the size of the DNN while
preserving full model performance by removing redun-
dant structures, determining the optimal bit width for each
layer that has a parameterized quantization layer added,
and recovering knowledge lost during pruning and quan-
tization phases. This is accomplished through a sequential
four-stage optimization process: warm-up stage, projection
stage, joint stage, and a cool-down stage. The warm-up
stage consists of optimizing over all trainable variables us-
ing the stochastic gradient (SGD) method or any of its vari-

ants at Line 2, which allows us to achieve a better initializa-
tion for improved performance. Next, we step into the pro-
jection stage (see Line 3-9), where we progressively reduce
the bit width range until the bit width constraint Eq. (4c) is
satisfied. This progressive technique enables us to transfer
information lost in the low bit precision representation back
to the current model. We then proceed to the joint stage
(see Line 10-21), where we progressively forget the quan-
tized information (see Eq. (6)) within the redundant groups
until the constraint Eq. (4b) is satisfied. In addition, the bit
width selected depends on the amount of information re-
moved within each layer at each step. Specifically, when a
significant amount of information is removed, we will con-
sider employing a high bit width for quantization. Once we
complete pruning and determine the bit width for each layer,
we train the pruned and quantized model until convergence,
referred to as the cool-down stage. The projection stage and
joint stage are two essential components in our approach
and we will discuss them in the next two subsections.

5.1. Projection Stage

During the projection stage, we aim to compute a feasi-
ble bit width. To do so, we consider the problem

min
x∈Rn

(d,qm,t)∈R|L|×R|L|×R|L|

f(x, d, qm, t) (7a)

s.t. bi ∈ [bl, bu], i ∈ L. (7b)

Related Approaches and Limitations. In numerical opti-
mization, projection methods and penalty methods are two
of the most common approaches for training DNNs with
explicit constraints. However, both approaches are inappro-
priate for our problem setting Eq. (7). On one hand, the pro-
jection method is effective when the projection operator has
a closed-form solution, while the projection operator asso-
ciated with Eq. (7b) lacks this property. On the other hand,
penalty methods (e.g., [4, 46]) consider a sequence of sub-
problems that relax the constraint by penalizing its violation
in the objective function. Its effectiveness is highly depen-
dent on an appropriate selection of the penalty parameter,
which often necessitates hyperparameter tuning.

Algorithm 3 Partial Projected Stochastic Gradient.

1: Inputs: Variables d, qm, t, and bit width range [bl, bu].
2: Update variables d, qm, t using SGD or its variants.
3: Determine the range [dmin, dmax] of d using (qm, t) and

formula Eq. (3).
4: Project d onto [dmin, dmax].
5: Outputs: d, qm, t.

Given the above discussion, we propose a variant of
a projected stochastic gradient method called partial pro-
jected stochastic gradient (PPSG) (see Algorithm 3). In this

15238

approach, the projection is applied only to the variable d.
Alternatively, one could apply the projection operation to
either qm or t, but our numerical testing shows this often
leads to training instability (gradients explode or vanish).

5.2. Joint Stage

During the joint stage, we aim to identify redundant
groups of G, to forget the information within the redundant
groups and transfer to the important groups being aware of
the quantization parameters, and to determine the layerwise
bit widths in terms of the information removed at each layer.

We first partition our parameter group G into a set of im-
portant groups GI and a set of redundant groups GR based
on saliency scores detailed in [12] at Line 12. For variables
in GI , we proceed with vanilla stochastic gradient or its vari-
ants at Eq. (5). For variables in GR, we progressively project
them to zero by forgetting redundant information at Eq. (6).
Due to the addition of parameterized quantization layers to
the original model, weight parameters x are converted to its
quantized counterpart, denoted as xQ. This observation un-
derscores the necessity to forget the quantized information
[xQ]GR

instead of the original information [x]GR
. Addition-

ally, it is essential to develop a new update rule for the for-
get rate γ that is aware of quantization parameters to better
maintain and transfer the knowledge.

For ease of notation, we denote the stochastic gradient
of function f(x, d, qm, t) with respect to x as ∇̂xf . Conse-
quently, the search direction s(x) for updating x is

s(x) =

{
−α[∇̂xf]g, g ∈ GI ,
−α[∇̂xf]g − γ[xQ]g, g ∈ GR.

(8)

The quantized value xQ in Eq. (8) can be rewritten as

xQ = sgn(x) · cliptqm(|x|) + d · sgn(x) ·R(x), (9)

where the clipped value can be written as

clipt
qm

(|x|) =

{
|x|t, |x| ≤ qm,

(qm)t, |x| > qm,
(10)

and the residual value is given by

R(x) =

{
⌊ |x|

t

d ⌉ −
|x|t
d , |x| ≤ qm,

⌊ (qm)t

d ⌉ −
(qm)t

d , |x| > qm.
(11)

We denote the angle between −[∇̂xf]g and −[sgn(x) ·
clipt

qm
(|x|)]g as θγ and the angle between −[∇̂xf]g and

−[sgn(x) ·d ·R(x)]g as θd. The clip represents the mean of
the clipped value within the redundant group GR, i.e.,

clip = mean
(
[clipt

qm
(|x|)]GR

)
. (12)

With the above notations, the forget rate γ selection rule is
expressed, for pre-specified small ϵ and η ∈ (0, 1), as

γ =

0, clip ≤ ϵ,

1− Kp−k−1
Kp−k , cos(θγ) ≥ 0, clip > ϵ,

− (1−η)α∥[∇̂xf]g∥
cos(θγ)∥[sgn(x)·cliptqm (|x|)]g∥ , cos(θγ) < 0, clip > ϵ.

(13)

The quantization step size d selection rule is, for ξ ∈ (0, 1),

d =

{
(qm)t

2bl−1−1
, cos(θd) ≥ 0,

− ξηα∥[∇̂xf]g∥
γ cos(θd)∥[sgn(x)·R(x)]g∥ , cos(θd) < 0.

(14)

Interpretation of Update Rules for γ and d. At a high
level, the update rule for the forget rate and quantization
step size ensures that the search direction in Eq. (8) is a
descent direction for the objective function f , as stated
in Proposition 5.1. Consequently, forgetting knowledge
stored in the redundant groups for pruning and quantizing
the variables jointly in this manner can make progress to-
wards convergence. Therefore, the conflict between prun-
ing and quantization is largely resolved via our design.
Remarks. When the mean of the clipped values within the
redundant group GR is relatively small, we reasonably in-
fer that little knowledge is retrieved in the redundant group.
Therefore, we set the forget rate to 0 and directly project all
parameters in the redundant group GR to zero. Otherwise,
our forget rate rule is divided based on the angle between the
gradient and clipped values. When cos(θγ) ≥ 0, any pos-
itive values can be chosen where we select it as a uniform
forgetting rate within Kp steps. The quantization step size
d is divided into two cases in terms of the angle between the
gradient and the residual values. When cos(θd) ≥ 0, d can
be selected as any positive values. In this scenario, we con-
sider a low bit width for quantization and specifically, d is
selected such that the computed bit width is equal to bl, the
min of the bit width range [bl, bu]. For details of the joint
stage implementation, one can refer to Appendix C.

Proposition 5.1. Let ∇̂xf be the full gradient of func-
tion f(x, d, qm, t) with respect to x. With forget rate γ se-
lection rule Eq. (13) and quantization step size d selection
rule Eq. (14), the search direction s(x) is a descent direc-
tion for the function f with respect to x at x.

Proof. See Appendix B

6. Numerical Experiments
In this section, we present numerical experiments to

demonstrate the effectiveness of our approach, accompa-
nied by ablation studies provided in Appendix E to assess
the contribution of each stage to the success of GETA. 2

2Experiment setup details are provided in Appendix D.

15239

DNN Architectures and Datasets. The experiments are
performed across a wide range of popular CNN archi-
tectures, such as VGG7 [33], ResNet20, ResNet50 and
RseNet56 [26], and transformer architectures, such as
Bert [34], varying vision transformers [1] and Large Lan-
guage Models (LLMs) such as Phi2-2.7B [32]. The se-
lected datasets include the benchmark CIFAR10 [35], Im-
ageNet2012 [13], Squad [34], and commen-sense bench-
marks in LM-Evaluation-Harness [21].
Comparing Methods. To validate the effectiveness and
superiority of our framework, we consider the follow-
ing methods for comparisons: ANNC [61], QST-B [47],
DJPQ [58] and its variants, BB [55], Clip-Q [52], OBC [19],
and a standard first-prune-then-quantize method. All these
methods consider both pruning and quantization. Moreover,
they use the same strategy that first conducts a search based
on the pretrained model and then fine-tunes the resulting
model with the configurations obtained from the search.
Evaluation Metrics. We evaluate the performance of each
method on two folds, model performance and computa-
tional efficiency. The performance depends on the down-
stream applications with common metrics such as accuracy
for image classification and EM or F1-scores for question
and answering tasks. Computational efficiency is assessed
by BOPs, where lower values indicate more compact mod-
els with typically faster inference. For ease of comparison,
we report the relative BOP ratio against the baseline full
precision models.

6.1. CNN Architectures

ResNet20 on CIFAR10. We first test our framework
GETA using ResNet20 on CIFAR10 dataset. For fair com-
parison, only weight quantization is applied, excluding ac-
tivation quantization. As shown in Tab. 2, GITA achieves
a 4.5% relative BOPs compression ratio with only a loss
of 0.28% in test accuracy, which demonstrates significantly
better performance than ANNC [61]. Compared to QST-
B [47], GETA reduces BOP by 13% with only a mini-
mal accuracy drop of 0.08%. We argue that GETA is bet-
ter suited for practical applications, as QST-B focuses on
joint unstructured pruning and quantization. While unstruc-
tured pruning tends to deliver higher accuracy at similar
compression ratios, its theoretical speedups are challeng-
ing to achieve without specialized hardware and software
supports [24, 30, 66]. In contrast, the structurally pruned
and quantized model produced by GETA is more easily de-
ployed in practical applications.
VGG7 on CIFAR10. We then test GETA using VGG7
on CIFAR10 to compare with the joint structured pruning
and quantization benchmarks. In this case, we enable both
weight and activation quantization and report the results
in Tab. 3. Based on the results, GETA could significantly
outperform other competitors in terms of the test accuracy

Table 2. ResNet20 on CIFAR10 dataset. The red and orange rep-
resent the best and second-best results, respectively, in the last two
columns. Same rule is followed in Tab. 3 and Tab. 4.

Method Pruning
Wt

Quant
Act

Quant
Accuracy

(%)
Rel.

BOPs (%)
Baseline ✗ ✗ ✗ 91.70 100
ANNC [61] Unstructured ✓ ✗ 90.90 6.1
QST-B [47] Unstructured ✓ ✗ 91.50 5.1
GETA Structured ✓ ✗ 91.42 4.5

by 0.61% - 1.14%, and achieves the second best relative
BOP ratio which is only worse than BB [55]. BB separates
the model architecture compression and training stages, re-
quiring substantial effort for each. In contrast, GETA of-
fers practical advantages, including efficiency and broad ar-
chitecture compatibility, enabling an end-to-end, automated
joint structured pruning and quantization approach.

Table 3. VGG7 on CIFAR10 dataset.

Method Pruning
Wt

Quant
Act

Quant
Accuracy

(%)
Rel.

BOPs (%)
Baseline ✗ ✗ ✗ 93.05 100
DJPQ [58] Structured ✓ ✓ 91.54 0.48
DJPQ-restrict [58] Structured ✓ ✓ 91.43 0.46
BB [55] Structured ✓ ✓ 91.96 0.29
GETA Structured ✓ ✓ 92.57 0.41

ResNet50 on ImageNet. We next test GETA using
ResNet50 on ImageNet. We select ResNet50 on ImageNet
because it serves as one of most common benchmarks in
structured pruning works [18, 39], while studies on joint
structured pruning and quantization seem absent to the best
of our knowledge. Therefore, we compare with joint un-
structured pruning or semi-structured pruning and quantiza-
tion works OBC [19] and Clip-Q [52]. Unlike the CIFAR10
experiments, we start the training from a pretrained check-
point. As the results present in Tab. 4, GETA could consis-
tently outperform them in terms of both test accuracy and
relative BOP ratios. Considering the difficulty of perfor-
mance preservation for structured pruning, GETA demon-
strates superior performance to existing works.

Table 4. ResNet50 on ImageNet dataset.

Method Pruning
Wt

Quant
Act

Quant
Accuracy

(%)
Rel.

BOPs (%)
Baseline ✗ ✗ ✗ 76.13 100
OBC [19] Semi-Structured ✓ ✗ 71.47 6.67
Clip-Q [52] Unstructured ✓ ✗ 73.70 6.30
GETA (40% sparsity) Structured ✓ ✗ 75.10 6.97
GETA (50% sparsity) Structured ✓ ✗ 74.40 5.38

6.2. Transformer

Bert on SQuAD. We now apply GETA to the transformer
architecture. The first is the representative encoder-based
BERT model [56] on the SQuAD benchmark [49]. While
previous works on joint quantization and structured pruning
have not been applied to the transformer architecture, we

15240

Table 5. Comparison of GETA vs. Structured Pruning followed by Post-Training Quantization (PTQ) for BERT on SQuAD.

Method Sparsity EM (%) F1 (%)
BOPs
(GB)

Rel.
BOPs (%)

Baseline 0% 80.08 88.50 13.57 100.0

OTO [10] followed up 8-bit PTQ

10% 73.87 83.43 3.17 23.4
30% 72.95 83.31 2.71 20.0
50% 72.71 83.30 2.26 16.7
70% 71.24 82.57 1.80 13.3

GETA

10% 78.26 86.06 2.63 19.4
30% 77.28 85.70 2.29 16.9
50% 76.74 85.87 1.96 14.4
70% 75.88 84.74 1.62 11.9

make a more relevant comparison by contrasting our joint
optimization approach with the sequential baseline, which
first applies pruning-aware training (HESSO) [12] and then
performs standard post-training quantization (PTQ) [48].
An alternative sequential baseline, the quantize-then-prune
approach, is excluded from our comparison for the follow-
ing two reasons: (i) Applying PTQ to the full model intro-
duces challenges when attempting to prune the model after-
ward, as calculating gradients with respect to quantized val-
ues requires careful handling. (ii) A recent work [25] math-
ematically shows that prune-then-quantize approach is the
optimal sequential strategy. Therefore, we focus on com-
paring GETA with the prune-then-quantize baselines.

The comparison in Tab. 5 clearly highlights the advan-
tages of joint structured pruning and quantization during
training, versus only pruning at training time and quantiza-
tion during post-training. At all sparsity ratios, GETA con-
sistently outperforms the multi-stage approach by a large
margin. In particular, we observe improvements in exact-
match rates (EM) and F1-scores while achieving better
compression rates. These results empirically validate that
joint pruning and quantization during training is superior
to the conventional approach of pruning-aware training fol-
lowed by post-training quantization, both in terms of model
quality and computational efficiency.

Figure 3. Phi2-2.7B.

Phi2 on Common-Sense. We
next evaluate GETA on pop-
ular large language models.
Since GETA leverages full
gradient information, we se-
lect Phi2-2.7B [32], a model
with fewer than 3 billion pa-
rameters, to ensure computa-
tional feasibility on a single
A100 GPU. Similar to the ex-
periments on BERT, we compare GETA with a prune-
then-quantize baseline. This baseline first applies pruning-
aware training techniques, including SliceGPT [2], LoraS-
hear [8], LoraPrune [65], and LLMPruner [43], followed
by PTQ. For a fair comparison, the average bit width

across all layers after applying GETA is set to approxi-
mately 8 bits, while the baseline uses uniform 8-bit PTQ. As
shown in Fig. 3, GETA consistently outperforms all prune-
then-quantize baselines in terms of average performance in
common-sense tasks including BoolQ, PIQA, HellaSwag,
WinoGrande, ARC-e, ARC-c and OBQA.
Vision Transformers. Finally, we evaluate GETA on a
variety of vision transformer architectures, including Sim-
pleViT [60], ViT [1], DeiT [51], Swin Transformer [41],
and Pyramid Vision Transformer [57]. These models are
selected to further validate the architecture-agnostic nature
of the GETA framework. To highlight this capability, we
focus on reporting the test accuracy and relative BOPs com-
pared to the baseline models. The promising results, as
shown in Tab. 6, demonstrate the efficiency and versatility
of GETA across diverse transformer architectures.
Table 6. Experiments on various vision transformer architectures.

Dataset Model Base Acc (%) Acc (%) Rel. BOPs (%)
Cifar10 SimpleViT 86.48 86.06 4.95

ImageNet

ViT-Small 81.43 80.12 19.37
DeiT-Tiny 72.01 72.88 16.95
Swin-Tiny 80.92 80.09 21.84
PVTv2-B2 81.69 80.53 17.39

7. Conclusion
We proposed GETA, an automatic framework designed

to jointly apply structured pruning and quantization-aware
training to deep neural networks, addressing key limitations
of existing methods. By leveraging quantization-aware de-
pendency graph analysis, GETA supports a wide range of
architectures. The proposed QASSO optimizer provides ex-
plicit control over bit width and sparsity, resolving black-
box issues in existing approaches. With improved general-
ization, white-box optimization, and a one-shot framework,
GETA offers an easy-to-use and user-friendly solution for
practical deployment. In the future, it will be interesting
to explore adapting GETA for specialized hardware to im-
prove real-world deployment on different platforms.
Acknowledgments. We acknowledge the Microsoft Ap-
plied Sciences Group for their computational support.

15241

References
[1] Dosovitskiy Alexey. An image is worth 16x16 words: Trans-

formers for image recognition at scale. arXiv preprint arXiv:
2010.11929, 2020. 7, 8

[2] Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do
Nascimento, Torsten Hoefler, and James Hensman. Slicegpt:
Compress large language models by deleting rows and
columns. In International Conference on Learning Repre-
sentations, 2024. 8

[3] Konstantinos Balaskas, Andreas Karatzas, Christos Sad,
Kostas Siozios, Iraklis Anagnostopoulos, Georgios Zervakis,
et al. Hardware-aware DNN compression via diverse prun-
ing and mixed-precision quantization. IEEE Transactions on
Emerging Topics in Computing, 2024. 1, 2, 3

[4] Dimitri P Bertsekas. Nonlinear programming. Journal of the
Operational Research Society, 48(3):334–334, 1997. 5

[5] Tianyi Chen, Frank E Curtis, and Daniel P Robinson. A
reduced-space algorithm for minimizing ℓ1-regularized con-
vex functions. SIAM Journal on Optimization, 27(3):1583–
1610, 2017. 3

[6] Tianyi Chen, Frank E Curtis, and Daniel P Robinson. Farsa
for ℓ1-regularized convex optimization: local convergence
and numerical experience. Optimization Methods and Soft-
ware, 2018. 3

[7] Tianyi Chen, Tianyu Ding, Bo Ji, Guanyi Wang, Yixin Shi,
Jing Tian, Sheng Yi, Xiao Tu, and Zhihui Zhu. Orthant based
proximal stochastic gradient method for ℓ1-regularized opti-
mization. In Machine Learning and Knowledge Discovery
in Databases: European Conference, ECML PKDD 2020,
Ghent, Belgium, September 14–18, 2020, Proceedings, Part
III, pages 57–73. Springer, 2021. 3

[8] Tianyi Chen, Tianyu Ding, Badal Yadav, Ilya Zharkov, and
Luming Liang. Lorashear: Efficient large language model
structured pruning and knowledge recovery. arXiv preprint
arXiv:2310.18356, 2023. 8

[9] Tianyi Chen, Tianyu Ding, Zhihui Zhu, Zeyu Chen, Hsiang-
Tao Wu, Ilya Zharkov, and Luming Liang. Otov3: Auto-
matic architecture-agnostic neural network training and com-
pression from structured pruning to erasing operators. arXiv
preprint arXiv:2312.09411, 2023. 3

[10] Tianyi Chen, Bo Ji, Tianyu Ding, Biyi Fang, Guanyi Wang,
Zhihui Zhu, Luming Liang, Yixin Shi, Sheng Yi, and Xiao
Tu. Only train once (oto): A one-shot neural network train-
ing and pruning framework. Neurips 2021, 2021. 1, 3, 8

[11] Tianyi Chen, Luming Liang, Ilya Zharkov Tianyu Ding, and
Zhihui Zhu. Otov2: Automatic, generic, user-friendly. ICLR
2023, 2023. 1, 3, 4

[12] Tianyi Chen, Xiaoyi Qu, David Aponte, Colby Banbury,
Jongwoo Ko, Tianyu Ding, Yong Ma, Vladimir Lyapunov,
Ilya Zharkov, and Luming Liang. Hesso: Towards automatic
efficient and user friendly any neural network training and
pruning. arXiv preprint arXiv:2409.09085, 2024. 3, 5, 6, 8

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 7

[14] Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie.
Model compression and hardware acceleration for neural
networks: A comprehensive survey. Proceedings of the
IEEE, 108(4):485–532, 2020. 1

[15] Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gholami,
Michael W Mahoney, and Kurt Keutzer. Hawq-v2: Hessian
aware trace-weighted quantization of neural networks. Ad-
vances in neural information processing systems, 33:18518–
18529, 2020. 3

[16] Zhen Dong, Zhewei Yao, Amir Gholami, Michael W Ma-
honey, and Kurt Keutzer. Hawq: Hessian aware quantization
of neural networks with mixed-precision. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 293–302, 2019. 3

[17] Ahmed T Elthakeb, Prannoy Pilligundla, Fatemehsa-
dat Mireshghallah, Amir Yazdanbakhsh, and Hadi Es-
maeilzadeh. Releq: A reinforcement learning approach for
automatic deep quantization of neural networks. IEEE micro,
40(5):37–45, 2020. 3

[18] Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and
Xinchao Wang. Depgraph: Towards any structural pruning.
arXiv preprint arXiv:2301.12900, 2023. 1, 3, 7

[19] Elias Frantar and Dan Alistarh. Optimal brain compres-
sion: A framework for accurate post-training quantization
and pruning. Advances in Neural Information Processing
Systems, 35:4475–4488, 2022. 7

[20] Elias Frantar and Dan Alistarh. Sparsegpt: Massive lan-
guage models can be accurately pruned in one-shot. In In-
ternational Conference on Machine Learning, pages 10323–
10337. PMLR, 2023. 3

[21] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence Gold-
ing, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle Mc-
Donell, Niklas Muennighoff, Chris Ociepa, Jason Phang,
Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang,
and Andy Zou. A framework for few-shot language model
evaluation, 07 2024. 7

[22] Shang-Hua Gao, Yong-Qiang Tan, Ming-Ming Cheng,
Chengze Lu, Yunpeng Chen, and Shuicheng Yan. Highly
efficient salient object detection with 100k parameters. In
European Conference on Computer Vision, pages 702–721.
Springer, 2020. 3

[23] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015. 1

[24] Cong Hao, Xiaofan Zhang, Yuhong Li, Sitao Huang, Jin-
jun Xiong, Kyle Rupnow, Wen-mei Hwu, and Deming Chen.
FPGA/DNN co-design: An efficient design methodology for
iot intelligence on the edge. In Proceedings of the 56th An-
nual Design Automation Conference 2019, pages 1–6, 2019.
7

[25] Simla Burcu Harma, Ayan Chakraborty, Elizaveta Kostenok,
Danila Mishin, Dongho Ha, Babak Falsafi, Martin Jaggi,
Ming Liu, Yunho Oh, Suvinay Subramanian, et al. Effective
interplay between sparsity and quantization: From theory to
practice. ICLR 2025, 2025. 8

15242

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 2016. 1, 7

[27] Yang He and Lingao Xiao. Structured pruning for deep con-
volutional neural networks: A survey. IEEE transactions on
pattern analysis and machine intelligence, 2023. 14

[28] Cheeun Hong, Sungyong Baik, Heewon Kim, Seungjun Nah,
and Kyoung Mu Lee. Cadyq: Content-aware dynamic quan-
tization for image super-resolution. In European Conference
on Computer Vision, pages 367–383. Springer, 2022. 3

[29] Peng Hu, Xi Peng, Hongyuan Zhu, Mohamed M Sabry Aly,
and Jie Lin. Opq: Compressing deep neural networks with
one-shot pruning-quantization. In Proceedings of the AAAI
conference on artificial intelligence, volume 35, pages 7780–
7788, 2021. 1, 3

[30] Sitao Huang, Carl Pearson, Rakesh Nagi, Jinjun Xiong,
Deming Chen, and Wen-mei Hwu. Accelerating sparse deep
neural networks on fpgas. In 2019 IEEE High Performance
Extreme Computing Conference (HPEC), pages 1–7, 2019.
7

[31] Yerlan Idelbayev and Miguel Á Carreira-Perpiñán. Explor-
ing the effect of ℓ0/ℓ2 regularization in neural network prun-
ing using the lc toolkit. In ICASSP 2022-2022 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 3373–3377. IEEE, 2022. 3

[32] Mojan Javaheripi, Sébastien Bubeck, Marah Abdin, Jy-
oti Aneja, Sebastien Bubeck, Caio César Teodoro Mendes,
Weizhu Chen, Allie Del Giorno, Ronen Eldan, Sivakanth
Gopi, et al. Phi-2: The surprising power of small language
models. Microsoft Research Blog, 1(3):3, 2023. 7, 8

[33] Simonyan Karen. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:
1409.1556, 2014. 7

[34] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of
NAACL-HLT, pages 4171–4186, 2019. 1, 7

[35] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. Technical report, Uni-
versity of Toronto, 2009. 7

[36] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, pages 1097–1105, 2012. 1

[37] Yunsong Li, Xin Zhang, Weiying Xie, Jiaqing Zhang,
Leyuan Fang, and Jiawei Du. Markov-pq: Joint pruning-
quantization via learnable markov chain. IEEE Transactions
on Circuits and Systems for Video Technology, 2024. 1, 2

[38] Shaohui Lin, Rongrong Ji, Yuchao Li, Cheng Deng, and
Xuelong Li. Toward compact convnets via structure-sparsity
regularized filter pruning. IEEE transactions on neural net-
works and learning systems, 31(2):574–588, 2019. 3

[39] Shaohui Lin, Rongrong Ji, Chenqian Yan, Baochang Zhang,
Liujuan Cao, Qixiang Ye, Feiyue Huang, and David Doer-
mann. Towards optimal structured cnn pruning via genera-
tive adversarial learning. In Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition,
pages 2790–2799, 2019. 7

[40] Jing Liu, Bohan Zhuang, Peng Chen, Chunhua Shen, Jian-
fei Cai, and Mingkui Tan. Single-path bit sharing for auto-
matic loss-aware model compression. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45(10):12459–
12473, 2023. 3

[41] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 10012–10022, 2021. 8

[42] Christos Louizos, Karen Ullrich, and Max Welling. Bayesian
compression for deep learning. In Advances in neural infor-
mation processing systems, pages 3288–3298, 2017. 1

[43] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner:
On the structural pruning of large language models. Ad-
vances in neural information processing systems, 36:21702–
21720, 2023. 8

[44] Fanxu Meng, Hao Cheng, Ke Li, Huixiang Luo, Xiaowei
Guo, Guangming Lu, and Xing Sun. Pruning filter in filter.
arXiv preprint arXiv:2009.14410, 2020. 3

[45] Srinivas S Miriyala, PK Suhas, Utsav Tiwari, and Vikram N
Rajendiran. Mixed precision neural quantization with multi-
objective bayesian optimization for on-device deployment.
In ICASSP 2024-2024 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages
6260–6264. IEEE, 2024. 3

[46] Jorge Nocedal and Stephen J Wright. Numerical optimiza-
tion. Springer, 1999. 5

[47] Jun-Hyung Park, Kang-Min Kim, and Sangkeun Lee. Quan-
tized sparse training: A unified trainable frameworrk for joint
pruning and quantization in dnns. ACM Transactions on Em-
bedded Computing Systems, Vol. 21, No. 5, Article 60, 2022.
1, 2, 3, 7

[48] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Mar-
tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch:
An imperative style, high-performance deep learning library.
In Advances in Neural Information Processing Systems 32,
2019. 8

[49] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. Squad: 100,000+ questions for machine com-
prehension of text. arXiv preprint arXiv:1606.05250, 2016.
7

[50] Md Maruf Hossain Shuvo, Syed Kamrul Islam, Jianlin
Cheng, and Bashir I Morshed. Efficient acceleration of deep
learning inference on resource-constrained edge devices: A
review. Proceedings of the IEEE, 111(1):42–91, 2022. 1

[51] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In International conference on machine learning,
pages 10347–10357. PMLR, 2021. 8

15243

[52] Frederick Tung and Greg Mori. Clip-q: Deep network com-
pression learning by in-parallel pruning-quantization. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 7873–7882, 2018. 1, 2, 3, 7

[53] Stefan Uhlich, Lukas Mauch, Fabien Cardinaux, Kazuki
Yoshiyama, Javier Alonso Garcia, Stephen Tiedemann,
Thomas Kemp, and Akira Nakamura. Mixed precision dnns:
All you need is a good parametrization. In International
Conference on Learning Representations, 2020. 2, 3

[54] Stefan Uhlich, Lukas Mauch, Kazuki Yoshiyama, Fa-
bien Cardinaux, Javier Alonso Garcia, Stephen Tiede-
mann, Thomas Kemp, and Akira Nakamura. Differen-
tiable quantization of deep neural networks. arXiv preprint
arXiv:1905.11452, 2(8), 2019. 3

[55] Mart van Baalen, Christos Louizos, Markus Nagel, Rana Ali
Amjad, Ying Wang, Tijmen Blankevoort, and Max Welling.
Bayesian bits: Unifying quantization and pruning. arXiv
preprint arXiv:2005.07093, 2020. 1, 2, 3, 7

[56] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in neural
information processing systems, pages 5998–6008, 2017. 1,
7

[57] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pvt
v2: Improved baselines with pyramid vision transformer.
Computational Visual Media, 8(3):415–424, 2022. 8

[58] Ying Wang, Yadong Lu, and Tijmen Blankevoort. Differen-
tiable joint pruning and quantization for hardware efficiency.
In European Conference on Computer Vision, pages 259–
277. Springer, 2020. 1, 2, 3, 7

[59] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and
Hai Li. Learning structured sparsity in deep neural networks.
arXiv preprint arXiv:1608.03665, 2016. 3

[60] Weiying Xie, Haowei Li, Jitao Ma, Yunsong Li, Jie Lei,
Donglai Liu, and Leyuan Fang. Jointsq: Joint sparsification-
quantization for distributed learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5778–5787, 2024. 8

[61] Haichuan Yang, Shupeng Gui, Yuhao Zhu, and Ji Liu. Auto-
matic neural network compression by sparsity-quantization
joint learning: A constrained optimization-based approach.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2178–2188, 2020. 1,
2, 3, 7

[62] Huanrui Yang, Wei Wen, and Hai Li. Deephoyer: Learn-
ing sparser neural network with differentiable scale-invariant
sparsity measures. In International Conference on Learning
Representations, 2020. 3

[63] Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gho-
lami, Jiali Yu, Eric Tan, Leyuan Wang, Qijing Huang, Yida
Wang, Michael Mahoney, et al. Hawq-v3: Dyadic neural net-
work quantization. In International Conference on Machine
Learning, pages 11875–11886. PMLR, 2021. 3

[64] Shaokai Ye, Tianyun Zhang, Kaiqi Zhang, Jiayu Li, Ji-
aming Xie, Yun Liang, Sijia Liu, Xue Lin, and Yanzhi
Wang. A unified framework of dnn weight pruning and

weight clustering/quantization using admm. arXiv preprint
arXiv:1811.01907, 2018. 1, 3

[65] Mingyang Zhang, Hao Chen, Chunhua Shen, Zhen Yang,
Linlin Ou, Xinyi Yu, and Bohan Zhuang. Loraprune: Prun-
ing meets low-rank parameter-efficient fine-tuning. arXiv
preprint arXiv:2305.18403, 2023. 8

[66] Xiaofan Zhang, Xinheng Liu, Anand Ramachandran,
Chuanhao Zhuge, Shibin Tang, Peng Ouyang, Zuofu Cheng,
Kyle Rupnow, and Deming Chen. High-performance video
content recognition with long-term recurrent convolutional
network for fpga. In 2017 27th International Conference on
Field Programmable Logic and Applications (FPL), pages
1–4. IEEE, 2017. 7

[67] Yuefu Zhou, Ya Zhang, Yanfeng Wang, and Qi Tian. Ac-
celerate cnn via recursive bayesian pruning. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 3306–3315, 2019. 3

[68] Tao Zhuang, Zhixuan Zhang, Yuheng Huang, Xiaoyi Zeng,
Kai Shuang, and Xiang Li. Neuron-level structured pruning
using polarization regularizer. Advances in Neural Informa-
tion Processing Systems, 33, 2020. 3

15244

	. Introduction
	. Challenges
	. Our Contributions

	. Related Work
	. Quantization with Learnable Parameters
	. Quantization-Aware Dependency Graph
	. QASSO
	. Projection Stage
	. Joint Stage

	. Numerical Experiments
	. CNN Architectures
	. Transformer

	. Conclusion

