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Abstract

Minimizing a non-smooth function over the Grassmannian appears in many appli-
cations in machine learning. In this paper we show that if the objective satisfies a
certain Riemannian regularity condition (RRC) with respect to some point in the
Grassmannian, then a projected Riemannian subgradient method with appropriate
initialization and geometrically diminishing step size converges at a linear rate
to that point. We show that for both the robust subspace learning method Dual
Principal Component Pursuit (DPCP) and the Orthogonal Dictionary Learning
(ODL) problem, the RRC is satisfied with respect to appropriate points of interest,
namely the subspace orthogonal to the sought subspace for DPCP and the orthonor-
mal dictionary atoms for ODL. Consequently, we obtain in a unified framework
significant improvements for the convergence theory of both methods.

1 Introduction

Optimization problems on the Grassmannian G(c,D) (a.k.a. the Grassmann manifold that consists of
the set of linear c-dimensional subspaces in RD), such as principal component analysis (PCA), appear
in a wide variety of applications including subspace tracking [3], system identification [41], action
recognition [34], object categorization [20], dictionary learning [32, 37], robust subspace recovery
[24, 40], subspace clustering [39], and blind deconvolution [48]. However, a key challenge is that the
associated optimization problems are often non-convex since the Grassmannian is a non-convex set.

One approach to solving optimization problems on the Grassmanian is to exploit the fact that the
Grassmannian is a Riemannian manifold and develop generic Riemannian optimization techniques.
When the objective function is twice differentiable, [4] shows that Riemannian gradient descent and
Riemannian trust-region methods converge to first- and second-order stationary solutions, respectively.
When Riemannian gradient descent is randomly initialized, [23] further shows that it converges to a
second-order stationary solution almost surely, but without any guarantee on the convergence rate.
Non-smooth trust region algorithms [19], gradient sampling methods [9, 8], and proximal gradient
methods [7] have also been proposed for non-smooth manifold optimization when the objective
function is not continuously differentiable. However, the available theoretical results establish
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convergence to stationary points from an arbitrary initialization with either no rate of convergence
guarantee, or at best a sublinear rate.1

On the other hand, when the constraint set is convex, [11, 10, 25] show that subgradient methods
can handle non-smooth and non-convex objective functions as long as the problem satisfies certain
regularity conditions called sharpness and weak convexity. In such a case, R-linear convergence1 is
guaranteed (e.g., see robust phase retrieval [13] and robust low-rank matrix recovery [25]). Analogous
to other regularity conditions for smooth problems, such as the regularity condition of [6] and the error
bound condition in [27], sharpness and weak convexity capture regularity properties of non-convex
and non-smooth optimization problems. However, these two properties have not yet been exploited
for solving problems on the Grassmannian, or other non-convex manifolds.

A related regularity condition, which in this paper is called the Riemannian Regularity Condition
(RRC), has already been exploited for orthogonal dictionary learning (ODL) [2], which solves an
`1 minimization problem on the sphere, a manifold parameterizing G(1, D). However, under this
RRC, projected Riemannian subgradient methods have only been proved to converge at a sublinear
rate. On the other hand, a projected subgradient method has been successfully used and proved to
converge at a piecewise linear rate for Dual Principal Component Pursuit (DPCP) [40, 49], a method
that fits a linear subspace to data corrupted by outliers. However, i) the convergence analysis does not
reveal where the improvement in the convergence rate comes from and ii) is restricted to optimization
on the sphere (G(1, D)) even for subspaces of codimension higher than one.

In this paper we make the following specific contributions:

• In Theorem 1 we prove that the projected Riemannian subgradient method for the Grassmannian
(Algorithm 1), with an appropriate initialization and geometrically diminishing step size, converges
to a point of interest at an R-linear rate if the problem satisfies the RRC (Definition 1). The
RRC characterizes a local geometric property of the Grassmannian-constrained non-convex and
non-smooth problem relative to a point of interest. Informally, the RRC requires that, in the
neighborhood of the point of interest, the negative of the Riemannian subgradient should have a
sufficiently small angle with the direction pointing toward the point of interest (Figure 1).

• We prove that the optimization problem associated with DPCP satisfies the RRC, which allows us
to apply our new result and conclude that the projected Riemannian subgradient method converges
at an R-linear rate to a basis for the orthogonal complement of the underlying (D− c)-dimensional
linear subspace. This is the first result to extend previous guarantees [40, 49, 12] from codimension
1 to higher codimensions, enabling us to efficiently find the entire orthogonal basis by solving
the learning problem directly on G(c,D), as opposed to the less efficient approach of solving a
sequence of c problems on G(1, D)[40]. Even for subspaces of codimension 1 (i.e., hyperplanes),
our result improves upon [49] by allowing for (i) a much simpler step size selection strategy that
requires little fine-tuning, and (ii) a weaker condition on the required initialization.

• Together with the already established RRC for ODL in [2], our new result implies that the projected
Riemannian subgradient method converges at an R-linear rate to atoms of the underlying dictionary,
thus improving upon [2], which established only a sublinear convergence rate.

2 Background and Notation

In this paper, we consider minimization problems on the Grassmannian G(c,D). For computations, it
is desirable to parameterize points on the Grassmannian. An element of G(c,D) can be represented by
an orthonormal matrix in O(c,D) =: {B ∈ RD×c : B>B = Ic}, which is the well-known Stiefel
manifold. When D = c, we denote O(c, c) by O(c), the orthogonal group. This matrix representation
is not unique since Span(BQ) = Span(B) for any Q ∈ O(c). Thus, we say A ∈ G(c,D) is
equivalent to B if Span(A) = Span(B). With this understanding, we use B to represent the
equivalence class [B] = {BQ : Q ∈ O(c)} and consider the parameterized problem [14, 20]

minimize
B∈O(c,D)

f(B), (1)

1Suppose the sequence {xk} converges to x?. We say it converges sublinearly if limk→∞ ‖xk+1 −
x?‖/‖xk − x?‖ = 1, and R-linearly if there exists C > 0, q ∈ (0, 1) such that ‖xk − x?‖ ≤ Cqk, ∀k ≥ 0.
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where f : RD×c → R is locally Lipschitz, possibly non-convex and non-smooth, and invariant to the
action of O(c), i.e., f(B) = f(BQ) for any Q ∈ O(c). Again, the global minimum of (1) is not
unique as if B? is a global minimum, then any point in [B?] is also a global minimum.

For any A,B ∈ O(c,D), the principal angles between Span(A) and Span(B) are defined as [36]
φi(A,B) = arccos(σi(A

>B)) for i = 1, . . . , c, where σi(·) denotes the i-th singular value. We
then define the distance between A and B as

dist(A,B) :=

√√√√2

c∑
i=1

(
1− cos(φi(A,B))

)
= min

Q∈O(c)
‖B −AQ‖F , (2)

where the last term is also known as the orthogonal Procrustes problem. The last equality in (2)
follows from the result [21] according to which the optimal rotation matrix Q minimizing ‖B −
AQ‖F is Q? = UV >, where UΣV > is the SVD of A>B. Thus, dist(A,B) = 0 iff Span(A) =
Span(B). We also define the projection of B onto [A] as

PA(B) = AQ?, where Q? = arg min
Q∈O(c)

‖B −AQ‖F . (3)

Here, AQ? is in [A], with Q? representing a nonlinear transformation of A>B, as described above.

Since f can be non-smooth and non-convex, we utilize the Clarke subdifferential, which generalizes
the gradient for smooth functions and the subdifferential in convex analysis. The Clarke subdifferential
of a locally Lipschitz function f at B is defined as [2]

∂f(B) := conv
{
lim
i→∞

∇f(Bi) : Bi → B, f differentiable at Bi

}
,

where conv denotes the convex hull. When f is differentiable at B, its Clarke subdifferential is
simply {∇f(B)}. When f is not differentiable at B, the Clarke subdifferential is the convex hull of
the limit of gradients taken at differentiable points. Note that the Clarke subdifferential ∂f(B) is a
nonempty and convex set since a locally Lipschitz function is differentiable almost everywhere.

Since we consider problems on the Grassmannian, we use tools from Riemannian geometry to
state optimality conditions. From [14], the tangent space of the Grassmannian at [B] is defined
as TB := {W ∈ RD×c : W>B = 0}, and the orthogonal projector onto the tangent space is
I−BB>, which is well-defined and does not depend on the class representative as AA> = BB>

for any A ∈ [B]. We generalize the definition of the Clarke subdifferential and denote by ∂̃f the
Riemannian subdifferential of f [2]:

∂̃f(B) := conv
{
lim
i→∞

(I−BB>)∇f(Bi) : Bi → B, f differentiable at Bi ∈ O(c,D)
}
. (4)

We say that B is a critical point of (1) if and only if 0 ∈ ∂̃f(B), which is a necessary condition for
being a minimizer to (1).

3 Projected Riemannian Subgradient Method

In this section, we state our key Riemannian regularitity condition (RRC,§3.1), propose a projected
Riemannian subgradient method (§3.2) based on RRC, and analyze its convergence properties (§3.3).

3.1 (α, ε,B?)-Riemannian Regularity Condition (RRC)

Definition 1. We say that f : RD×c → R satisfies the (α, ε,B?)-Riemannian regularity condi-
tion (RRC)2 for parameters {α, ε} > 0 and B? ∈ O(c,D), if for every B ∈ O(c,D) satisfying
dist(B,B?) ≤ ε, there exists a Riemannian subgradient G(B) ∈ ∂̃f(B) such that

〈PB?(B)−B,−G(B)〉 ≥ α dist(B,B?). (5)

2Strictly speaking, Definition 1 is extrinsic since we view the Grassmannian as embedded in the Euclidean
space and (5) involves the standard inner product in the Euclidean space.
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Figure 1: Illustration of Definition 1.
Red nodes denote [B?], with the top
one closest to B. Inequality (5) re-
quires the angle between PB?(B)−
B (purple arrow) and −G(B) (blue
arrow) to be sufficiently small.

Recently, a particular instance of Definition 1 was shown
to hold [2] in the context of ODL (see §4.2). We note
that −G(B) is not necessarily a descent direction for all
G(B) ∈ ∂̃f(B), and that the set of allowable Riemannian
subgradients that satisfy (5) need not include the minimum
norm element from ∂̃f(B) even though that one is known
to be a descent direction [18]. In §4, we show that a natu-
ral choice of Riemannian subgradient satisfies (5) for DPCP
and ODL, where B? is a target solution. As illustrated in
Figure 1, condition (5) implies that the negative of the cho-
sen Riemannian subgradient G(B) has small angle to the
direction PB?(B)−B. To see this, let

ξ := sup {‖G(B)‖F : dist(B,B?) ≤ ε} (6)
denote an upper bound on the size of the Riemannian sub-
gradients in a neighbrohood of B?. Assume ξ < ∞.
From (5) we have 〈PB?(B) − B,−G(B)〉/‖PB?(B) −
B‖F ‖G(B)‖F ≥ α/ξ, which gives a bound on the sum of the cosines of the principal angles
between PB?(B)−B and −G(B) and implies that ξ ≥ α.
In §3.3 we prove that if the (α, ε,B?)-RRC holds, then a projected Riemannian subgradient method
will converge to B? when an appropriate initialization and step size strategy are used.

Definition 1 is similar in nature to other regularity conditions that characterize geometric properties of
the objective function. Perhaps the most closely related ones for non-smooth functions are sharpness
and weak convexity. Consider a function h : RD → R and assume that the set

X := {z ∈ RD : h(z) ≤ h(x) for all x ∈ Rn}
of global minima of h is non-empty. Then, h is said to be sharp with parameter ν > 0 (see [5]) if

h(x)− min
z∈RD

h(z) ≥ ν dist(x,X ) (7)

holds for all x ∈ RD. The function h is said to be weakly convex with parameter τ ≥ 0 if
x 7→ h(x) + τ

2‖x‖2 is convex [42]. If h is both sharp and weakly convex, then [10, 25] show that

〈PX (x)− x,d〉 ≥ ν dist(x,X )− τ
2 dist

2(x,X ) (8)

for any x ∈ RD and any d ∈ ∂h(x), where PX is the orthogonal projector onto the set X . Note that
(8) is useful when its right-hand side is nonnegative, i.e., when dist(x,X ) ≤ (2ν)/τ . Thus, for any
ε < (2ν)/τ , we have

〈PX (x)− x,d〉 ≥
(
ν − τ

2
ε
)
dist(x,X ) for all d ∈ ∂h(x) (9)

whenever x satisfies dist(x,X ) ≤ ε. Noting the similarity between (9) and (5) (B? can be taken as a
minimizer of h), the RRC (5) can be viewed as a generalization of (9) (the consequence of sharpness
and weak convexity) to the Riemannian manifold. There are two main differences. First, (5) differs
from (9) in that its left-hand side involves the Riemannian subgradient due to the Grassmannian
constraint. Second, (5) is only required to hold for a particular Riemannian subgradient at B, while
(9) holds for all subgradients, thus imposing a slightly stronger regularity condition on the problem.

3.2 Projected Riemannian Subgradient Method on the Grassmannian

We propose to solve (1) using the projected Riemannian subgradient method in Algorithm 1. Given
the kth iterate Bk, the next iterate Bk+1 is obtained by first moving in a direction opposite to a
Riemannian subgradient at Bk that satisfies the regularity condition in (5), and then performing
orthonormalization. In Section 4, we will show that such a projected Riemannian subgradient can
be easily computed for ODL and DPCP. Note that B̂k+1 in (10) always has full column rank since
G(Bk) is orthogonal to Bk; see the supplementary material for a formal proof. Also, there are
multiple ways to orthonormalize B̂k+1, although for our purpose they are all equivalent since they all
correspond to the same subspace. In (10), orth refers to any method that finds an orthonormal basis
for Span(B̂k+1). For example, one can compute Bk+1 to be the Gram-Schmidt orthonormalization
of B̂k+1, or as the first c left singular vectors of B̂k+1. Finally, note that no specific step size rule is
provided in Algorithm 1, whereas specific choices are made for the convergence analysis in §3.3.
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Algorithm 1 Projected Riemannian Subgradient Method
Initialization: set B0 and µ0;

1: for k = 0, 1, . . . do
2: obtain G(Bk) ∈ ∂̃f(Bk) satisfying (5) with B = Bk;
3: compute a step size µk according to a certain rule;
4: update the iterate:

B̂k+1 ← Bk − µkG(Bk) and Bk+1 ← orth(B̂k+1); (10)

5: end for

3.3 Convergence Analysis

Our convergence analysis for Algorithm 1 relies in the RRC of Definition 1. When this regularity
condition holds, we show that the iterates of Algorithm 1 exhibit the following properties: (i) they
converge to a neighborhood of the set B? when a constant step size is used, and (ii) they converge at
an R-linear rate to B? when a geometrically diminishing step size is used.

3.3.1 Constant step size

We first consider the convergence of Algorithm 1 when a constant step size is used.
Proposition 1. Suppose that for some (α, ε,B?) the function f satisfies the (α, ε,B?)-RRC in
Definition 1. Let {Bk} be generated by Algorithm 1 with step size µk ≡ µ ≤ αε/ξ2 and initial
iterate B0 satisfying dist(B0,B

?) ≤ ε, where ξ is defined in (6). Then, for all k ≥ 0, it holds that

dist(Bk,B
?) ≤ max

{
dist(B0,B

?)− µαk/2, µξ2/α
}
. (11)

Towards interpreting Proposition 1, first consider the case dist(B0,B
?) > µξ2/α, in which

case (11) implies that after at most K = 2(dist(B0,B
?) − µξ2/α)/(µα) iterates, the inequal-

ity dist(Bk,B
?) ≤ µξ2/α will hold for all k ≥ K. In that sense, Proposition 1 essentially says that

no further decay of dist(Bk,B
?) can be guaranteed. This agrees with empirical evidence regarding

Algorithm 1 with constant step size (see Section 4). Note that (11) also suggests a tradeoff in selecting
the step size µ. A larger step size µ leads to a faster decrease on the bound but a larger universal
upper bound of µξ2/α, which may even exceed dist(B0,B

?) if µ is too large.

3.3.2 Geometrically diminishing step size

A useful strategy to balance the tradeoff discussed in the previous paragraph is to use a diminishing
step size that starts relatively large and decreases to zero as the iterates proceed. As the universal upper
bound µξ2

α in (11) is proportional to µ, it is expected that the decay rate of the step size will determine
the convergence rate of the iterates. In this section, we consider a geometrically diminishing step
size scheme, i.e., we decrease the step size by a fixed fraction between iterations. Our argument is
inspired by [10, 25]. Convergence with geometrically diminishing step size is guaranteed by the
following result, which shows that if we choose the decay rate and initial step size properly, then the
projected Riemannian subgradient method converges to B? at an R-linear rate.
Theorem 1. Suppose that f satisfies the (α, ε,B?)-RRC in Definition 1. Let {Bk} be the sequence
generated by Algorithm 1 with step size

µk = µ0β
k (12)

and initialization B0 satisfying dist(B0,B
?) ≤ ε. Assume

µ0 ≤
α dist(B0,B

?)

2ξ2
and

√
1− 2

αµ0

dist(B0,B
?)

+
µ2
0ξ

2

dist2(B0,B
?)

=: β ≤ β < 1, (13)

where ξ is defined in (6). Then, the sequence {Bk} satisfies

dist(Bk,B
?) ≤ dist(B0,B

?)βk for all k ≥ 0. (14)
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The rate at which {dist(Bk,B
?)}k≥0 tends to zero in (14) is determined by β which satisfies

(13). Note that β is well defined and is strictly less than 1 in (13). To see this, on one hand,
µ0 ≤ α dist(B0,B

?)/2ξ2 and ξ ≥ α together imply 1 − 2αµ0/dist(B0,B
?) ≥ 0. On the

other hand, −2αµ0/dist(B0,B
?) + µ2

0ξ
2/dist2(B0,B

?) < 0 is a decreasing function of µ0 when
µ0 ∈ (0, α dist(B0,B

?)/2ξ2]. In particular, when µ0 = α dist(B0,B
?)/2ξ2, we have β =√

1− 3α2/4ξ2, giving the fastest decaying rate by setting β = β. Finally, if dist(B0,B
?) is not

known a priori, then one can replace it by its upper boud ε in (13) and (14) and the results still hold.

4 Applications

In this section, we show that Algorithm 1 achieves an R-linear convergence rate for Dual Principal
Component Pursuit (DPCP) [40, 49] and Orthogonal Dictionary Learning (ODL) [37, 2].

4.1 DPCP for Robust Subspace Learning

We begin with the problem of learning a subspace from data corrupted by outliers. Important methods
include Random Sampling And Consensus (RANSAC) [17], geodesic gradient descent [29], coherence
pursuit [33], and many that solve convex formulations based on `1 and nuclear norm optimization
[44, 47, 24, 35, 46], but require either the dimension of the subspace or the number of outliers to
be sufficiently small. On the other hand, DPCP [38, 39, 40, 49] solves a non-convex problem, can
provably handle subspaces of high dimension, and can provably tolerate as many outliers as the
square of the number of inliers. DPCP has been successfully applied in three-view geometry problems
[40] and road plane detection from 3D point cloud data [49, 12], has been shown to outperform
RANSAC, and has been applied in the multiple-hyperplane case [39]. The main principle behind
DPCP is the computation of a basis for the orthogonal complement of the subspace to be learned.
Specifically, given a dataset X̃ = [X O]Γ ∈ RD×L, where the columns of X ∈ RD×N are inlier
points spanning a d-dimensional subspace S of RD, the columns of O ∈ RD×M are outlier points,
and Γ is an unknown permutation, DPCP solves

minimize
B∈O(c,D)

f(B) := ‖X̃>B‖1,2 ≡
L∑
i=1

‖x̃>i B‖2, (15)

where c = D − d is the codimension of S. An iterative reweighted least squares (IRLS) algorithm
has been empirically utilized to solve (15) in [40], but without formal guarantees.

Verification of the regularity condition. We will show that the DPCP problem (15) satisfies the
RRC, which will then be used to establish convergence rates. Since the objective function f in (15)
is regular, it follows from [45] that ∂̃f(B) = (I − BB>)∂f(B). Also note that the `2 norm is
subdifferentially regular, thus by the chain rule one choice for the Riemannian subgradient is

G(B) = (I−BB>)

L∑
i=1

x̃i sign(x̃
>
i B), where sign(a) :=

{
a/‖a‖2 if a 6= 0,
0 if a = 0.

(16)

To analyze (15), we define two quantities. The first one characterizes the maximum Riemannian
subgradient related to outliers: ηO := 1

M maxB∈O(c,D)

∥∥(I−BB>)
∑M
i=1 oi sign(o

>
i B)

∥∥
F
,which

appears in [49] when B is on O(1, D). The second one is related to the inliers and is given
by cX ,min := 1

N minb∈S∩O(1,D) ‖X>b‖1, which is referred to as the permeance statistic in [24].
These quantities reflect how well distributed the inliers and outliers are, with larger values of
cX ,min (respectively, smaller values of ηO) corresponding to a more uniform distributions of inliers
(respectively, outliers). One of the key insights in this paper is that the DPCP problem (15) satisfies
the RRC of Definition 1 as we now state.

Theorem 2. For any ε <
√

2
(
1−MηO/NcX ,min

)
, the DPCP problem (15) satisfies the (α, ε,S⊥)-

RRC with α = ((1− ε2/2)NcX ,min −MηO)/
√
2c and any orthonormal basis S⊥ for S⊥. Also,

‖G(B)‖F ≤
√
N ‖X‖2 +MηO for all B ∈ O(c,D), where ‖ · ‖2 denotes the spectral norm.

Combining this with Theorem 1 allows us to conclude the linear convergence of Algorithm 1 to S⊥.
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Corollary 1. Suppose that the initialization B0 satisfies dist2(B0,S
⊥) < 2 (1−MηO/NcX ,min) ,

where dist(B0,S
⊥) is defined in (2). Let {Bk} be the sequence generated by Algorithm 1 for solving

the DPCP problem (15) with G(Bk) in (16) and step size µk = µ0β
k, where µ0 and β satisfy (13)

with ε = dist(B0,S
⊥), α = ((1− ε2/2)NcX ,min −MηO)/

√
2c, and ξ =

√
N ‖X‖2 +MηO.

Then, Bk converges to S⊥ at an R-linear rate, i.e., dist(Bk,S
⊥) ≤ βk dist(B0,S

⊥) for all k ≥ 0.

Corollary 1 implies that the Riemannian subgradient method with a good initialization converges to an
orthonormal basis of S⊥ at an R-linear rate. When c = 1, a projected subgradient method was proved
to have a piecewise linear convergence rate in [49]. In this case, Corollary 1 improves upon [49]
in three ways: (i) it allows for a simpler strategy for selecting the step size than does the piecewise
geometrically diminishing step size, which has two more parameters controlling when and how
often to decay the step size; (ii) it provides a more transparent convergence analysis since its proof
follows directly from the RRC and Theorem 1; and (iii) it places a slightly weaker requirement on the
initialization, which in practice we compute as the bottom eigenvectors of X̃ X̃> as in [40, 49]. In the
supplementary material, we show this spectral initialization satisfies the requirement in Corollary 1.
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0 50 100 150 200

10
-10

10
-5

10
0

 = 0.5

 = 0.6

 = 0.7

 = 0.8

 = 0.9

(b) Performance on problem (15) for
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Figure 2: Performance of Algorithm 1 on the DPCP problem (15) and the ODL problem (17).

Experiments. Synthetic data for the DPCP problem is generated as follows: randomly sample
a subspace S of co-dimension c = 10 in ambient dimension D = 100, and uniformly at random
sample N = 1500 inliers from S ∩O(1, D) and M = 3500 outliers from O(1, D) so that the outlier
ratio is M/(M + N) = 0.7. As an initialization B0, we use the bottom c eigenvectors of X̃ X̃>
[40, 49] as we described before.

Figure 2a displays the convergence of the projected Riemannian subgradient method with different
choices of step size. We observe linear convergence for the geometrically diminishing step size,
which converges much faster than when a constant step size or classical diminishing step size (O(1/k)

and O(1/
√
k)) is used. In Figure 2b, we illustrate the effect of the decay factor β for Algorithm 1

with geometrically diminishing step size µk = 0.01βk. First observe that, as expected, β controls the
convergence speed. When β is too small (e.g., β ∈ {0.5, 0.6}) convergence may not occur, which
agrees with (13) and (14). However, when β ≥ 0.7 the algorithm converges at an R-linear rate, with
larger values of β resulting in slower convergence speeds.

4.2 Orthogonal Dictionary Learning

Given a dataset X̃ ∈ RD×N , DL [30] aims to learn a sparse representation Θ ∈ RM×N for X̃ by
finding a dictionary A ∈ RD×M such that X̃ ≈ AΘ with Θ sparse. Several DL methods have been
proposed in the literature, including the method of optimal directions (MOD) [16], K-SVD [15],
and alternating minimization [1], as well as the Riemannian trust region method [37] and projected
Riemannian subgradient method [2] for ODL. Here, we consider the ODL problem [37, 2] in which
the dictionary is square and orthogonal and the data is generated by the following random model.3

Definition 2 (Random model for ODL [2]). Assume A ∈ RD×D is a fixed but unknown orthonormal
matrix. The data is generated as X̃ = AΘ, where each column of Θ ∈ RD×D is an i.i.d. Bernoulli-
Gaussian random vector with parameter ρ ∈ (0, 1) that controls the sparsity.

3Extensions to other models including deterministic models are the subject of future work.
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If b is a column of A, then A>b is a standard basis vector and X̃>b = Θ>A>b is sparse. Thus,
minimizing ‖X̃>b‖0 over the sphere is expected to yield the column of A that is least used in the
representation Θ. For computational reasons, the `0 semi-norm is replaced by the `1 norm [2] 4 thus
leading to the problem5

minimize
b∈O(1,D)

f(b) = 1
N ‖X̃>b‖1. (17)

Verification of the regularity condition. We show that the regularity condition in (5) is satisfied
for problem (17). The primary difference with our previous analysis is that the data is now random.
Thus, (5) will only be proved to hold with high probability. Towards that end, similar to (16), a
Riemannian subgradient for (17) is

G(b) = 1
N

(
I− bb>

)( N∑
i=1

sign(x̃>i b)x̃i

)
. (18)

The projected Riemannian subgradient method has been utilized in [2] for solving (17), but only
with a sublinear rate of convergence guarantee, even though the function has been proved to satisfy
(5) with high probability. Based on this condition, we will show that Algorithm 1 can solve (17)
more efficiently, indeed with a linear convergence rate. To describe the RRC for (17), suppose
without loss of generality that the orthonormal dictionary A is the identity matrix. Then, the
goal is to find the standard basis vectors {±e1, . . . ,±eD}, where the sign is irrelevant because
f(b) = f(−b). We now define a region of interest that is near each basis vector ei and −ei as
Iiζ =

{
b ∈ O(1, D) :

b2i
maxj 6=i b2j

≥ 1+ ζ
}

, where ζ > 0 and bj is the j-th entry of b. Each region Iiζ
contains all unit vectors whose i-th entry is at least

√
1 + ζ larger (in absolute value) than the other

entries. The RRC for (17) is then captured by the following result.
Theorem 3. [2, Theorem 3.6] Assume ρ ∈ [1/D, 1/2] in the random model of Definition 2. There
exist universal constants C, c > 0 such that if N ≥ CD4ζ−2ρ−2 log(D/ζ) for all ζ ∈ (0, 1), then
with probability at least 1− exp(−cNρ3ζ2D−3/ logN) the ODL problem (17) satisfies (5) for any
b ∈ Iiζ with G(b) in (18) and B? = ei for any i, and α = 1

16ρ(1− ρ)ζD−
3
2 .

Note that Theorem 3 ensures that (5) holds only for all b ∈ Iiζ , but not all b that is ε-close to ei.
Fortunately, [2, Proposition D.2] ensures the iterates generated by Algorithm 1 do stay within Iiζ ,
which together with Theorem 1 guarantees the convergence of Algorithm 1.
Corollary 2. Let {bk} be the sequence generated by Algorithm 1 for the ODL problem (17) with
b0 ∈ Iiζ (ζ ≤ 55

64 ) and step size µk = µ0β
k, where µ0 and β satisfy the conditions in Theorem 1

with ξ = 2 and ε =
√
2, and α = 1

16ρ(1− ρ)ζD−
3
2 . Under the same setup as in Theorem 3, with

probability at least 1− exp(−cNρ3ζ2D−3/ logN), {bk} converges to ei at an R-linear rate, i.e.,

dist(bk, ei) ≤ βk dist(b0, ei). (19)

Corollary 2 improves upon [2, Theorem 3.8], according to which under the setup in Corollary 2
and with step size µk = O(1/k3/8), it follows that mink′≤k dist(bk′ , ei) = O(1/k3/8). Indeed, our
result (19) gives a direct bound on the k-th iteration and not on the best iteration obtained so far.

Experiments We use the same setup in [2] by first generating a random orthogonal dictionary
A ∈ RD×D with D = 70, sparsity level ρ = 0.3, and number of data points N = 5857 ≈ 10D1.5.
As in [2], the initialization b0 is randomly generated from the unit sphere O(1, D) and belongs to one
of the D sets {Ii1/5 logD : i = 1, . . . , D} with probability at least one-half [2, Lemma 3.9]. Figure 2c

4[37] considered a smoothed version of (17), allowing one to use gradient-based algorithms. However, the
obtained solution is perturbed from the targeted one and thus a rounding step is needed.

5All the columns of A can be obtained by repeating this process with the removal of the contribution from
the previously learned columns. Alternatively, as will been seen in Corollary 2, the column that Algorithm 1
converges to depends on the initialization. Thus, one may simply repeat Corollary 2 with different initializations
(e.g., random initializations) each time [2]. It is of interest to extend (17) in order to estimate the whole dictionary,
e.g., minimizing ‖X̃>B‖1, s. t. B ∈ O(D), where `1 counts the sum of the elements of the matrix. Note that
this is not an optimization on the Grassmannian since the objective is not rotation invariant.

8



displays the convergence of the Riemannian subgradient method for different choices of the step
size for solving (17). We observe linear convergence for geometrically diminishing step size, which
converges much faster than the others, in particular when µk = O( 1

k3/8
) as is used in [2].

5 Conclusion and Discussion

We proved that a projected Riemannian subgradient method with geometrically diminishing step
sizes converges linearly for non-convex and non-smooth problems on the Grassmannian that satisfy
a certain regularity condition on the Riemannian subgradient. We also showed that our regularity
condition is satisfied by `1 co-sparse formulations for orthogonal dictionary learning and robust
subspace learning, which led to improved convergence rates when compared to existing results.

We conclude this paper by pointing out several interesting directions for future work.

Extension to intrinsic methods. In this paper we take an extrinsic approach because extrinsic
methods are typically easier to implement, e.g. when the projection map is easier to compute than the
geodesic distance. Extending the current analysis to an intrinsic optimization method—where the
iterates are taken along a geodesic direction—is worth exploring.

Extension to other submanifolds of Euclidean space. Although we focus on optimization problems
over the Grassmannian, the Riemannian regularity condition can be extended to other submanifolds
of Euclidean space with an appropriate definition of the Riemanniann metric and distance. Using
this condition to analyze the convergence of the projected Riemannian subgradient method for other
manifolds (such as the Stiefel manifold) is the subject of ongoing work.

Application to other problems. Aside from the robust subspace and dictionary learning problems
considered here, other problems in machine learning and signal processing can be formulated as
minimizing a non-smooth function over the sphere or Stiefel manifold and thus (potentially) can
be efficiently solved by the Riemannian subgradient method. These problems include the `1-norm
(kernel) PCA [22, 28, 43], multi-channel sparse blind deconvolution [26, 31], etc.
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