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ABSTRACT
Neural Radiance Fields from Sparse inputs (NeRF-S) have shown
great potential in synthesizing novel views with a limited number
of observed viewpoints. However, due to the inherent limitations of
sparse inputs and the gap between non-adjacent views, rendering
results often suffer from over-fitting and foggy surfaces, a phenom-
enon we refer to as "CONFUSION" during volume rendering. In
this paper, we analyze the root cause of this confusion and attribute
it to two fundamental questions: "WHERE" and "HOW". To this
end, we present a novel learning framework, WaH-NeRF, which
effectively mitigates confusion by tackling the following challenges:
(i) “WHERE” to Sample? in NeRF-S—we introduce a Deformable
Sampling strategy and a Weight-based Mutual Information Loss to
address sample-position confusion arising from the limited number
of viewpoints; and (ii) “HOW” to Predict? in NeRF-S—we propose
a Semi-Supervised NeRF learning Paradigm based on pose perturba-
tion and a Pixel-Patch Correspondence Loss to alleviate prediction
confusion caused by the disparity between training and testing
viewpoints. By integrating our proposed modules and loss func-
tions, WaH-NeRF outperforms previous methods under the NeRF-S
setting. Code is available https://github.com/bbbbby-99/WaH-NeRF.

CCS CONCEPTS
• Computing methodologies → Rendering; Image-based ren-
dering.
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1 INTRODUCTION
The field of 3D modeling and scene synthesis has experienced a sig-
nificant transformation with the advent of Neural Radiance Fields
(NeRF) [19]. By utilizing deep neural networks, NeRF and its vari-
ants feature implicit representations of entire 3D scenes, resulting
in remarkable progress in generating geometric 3D representations
and synthesizing immersive novel views. Unlike traditional Novel
View Synthesis methods [10, 25], NeRF exhibits higher efficiency
through volume rendering. However, NeRF’s ability to generate re-
alistic renderings relies heavily on dense viewing inputs, which can
be challenging to collect in real-world applications such as robotic
navigation [24] and autonomous driving [27], among others.

In scenarios with insufficient inputs, several works [13, 35] have
demonstrated the negative impact on vanilla NeRF performance and
introduced Neural Radiance Fields from Sparse inputs (NeRF-S) to
address this challenge. Unfortunately, sparse viewpoints often fail
to provide enough information to generate a complete geometric 3D
representation, leading to some derivative works of NeRF [32, 37]
as well as traditional NVSmethods focusing on adjacent viewpoints.
However, this simplification restricts the rendering scope and ap-
plication scenarios for NeRF, prompting recent research [13, 20]
efforts to explore rendering a complete scene under sparse inputs.

For this, recent prominent works [20, 35] propose image-wise (or
patch-wise) regularization (as Fig. 1(a)) on geometry and color by
adding additional supervision [20] or warping for pseudo-label [35].
Although these approaches alleviate the gap between training and
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testing viewpoints and achieve state-of-the-art performance, the
additional supervision, such as depth image and pre-trained models,
are often not feasible, and the warping can be time-consuming.

In this work, instead of relying on warping or additional super-
vision on rendered images, we approach this problem by analyzing
the fundamental causes of untrustworthy geometry and color pre-
dictions during volume rendering. As shown in Fig. 2 (a-b), NeRF-S
suffers from drifted sampling points near the surface (as black
dashed box) and unstable, incorrect predictions before volume ren-
dering (as black solid box), compared with vanilla NeRF. Intuitively,
such uncertainty leads to foggy geometry and color errors in ren-
dered images. Based on the above observations, we speculate that
the uncertainty of surface and prediction in NeRF-S arises from the
confusion of “WHERE to sample?” and “HOW to predict?”, which
significantly contributes to rendering collapse when dealing with
sparse inputs. Unfortunately, existing works primarily focus on
regularizing rendered images after volume rendering and pay little
attention to such confusion during the volume rendering process.

To address this issue, we propose the following two modules to
mitigate such confusion (as Fig. 1(b)):

WHERE to sample in NeRF-S? Due to the lack of necessary
information for geometric 3D representation in NeRF-S, we intro-
duce the prior knowledge of surface uniqueness and propose a
Deformable Sampling strategy. This strategy employs a learnable
offset to adaptively deform sampling positions, forcing density dis-
tribution to converge on the target accurate surface. Additionally,
by analyzing the correlation between weight and offset, we design
a Weight-based Mutual Information Loss to maintain rendering
stability during the training phase.

HOWto predict inNeRF-S? Tomitigate the over-fitting caused
by the gap between training and testing viewpoints, we draw inspi-
ration from consistency regularization in semi-supervised learning
and propose a Semi-Supervised NeRF learning Paradigm based on
pose perturbation. This paradigm adopts consistency regularization
between unseen ray and perturbed rays generated by pose pertur-
bation. To ensure local consistency, we introduce the Pixel-Patch
Correspondence Loss (PPC) to alleviate unregistered pixel-wise
correspondences from perturbation and improve the smoothness
between adjacent rays.

By integrating the aforementioned modules in parallel, we miti-
gate the uncertainty of surface and prediction, as shown in Fig. 2
(d). Furthermore, compared to baseline, as shown in Fig. 2 (b) and
existing work based on rendered image, RegNeRF [20], as shown
in Fig. 2 (c), our proposed method answers the confusion of "Where"
and "How" better. Its superiority is further demonstrated qualita-
tively and quantitatively, as detailed in Sec. 4. In summary, we make
the following specific contributions in the paper:

• We demonstrate that the confusion of "WHERE to sample?"
and "HOW to predict?" in NeRF-S are the main sources of
rendering collapse in sparse input scenarios. Based on this
insight, we propose WaH-NeRF, aiming to mitigate confusion
before volume rendering.

• We propose a Deformable Sampling strategy and a Weight-
based Mutual Information Loss to alleviate uncertainty in sam-
ple positions. Meanwhile, we develop a Semi-Supervised NeRF
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Figure 1: Different from existing algorithms: Existing state-of-
the-art methods, e.g. RegNeRF [20] as (a), rely on regulariza-
tion for rendered color and depth images, which ignore the
causes of performance degradation before volume render-
ing. Our work, as shown in (b), analyzes the sample-render
process and mitigates the confusion of “WHERE to sample?”
and “HOW to predict?” in NeRF-S during volume rendering.

Paradigm based on pose perturbation and a Pixel-Patch Corre-
spondence Loss to mitigate uncertainty in sample predictions.

• We show thatWaH-NeRF achieves state-of-the-art performance
compared to existing algorithms through extensive experiments,
without any pre-trained models and time-consuming image
warping. Our experimental results also demonstrate the effec-
tiveness of these modules and losses in mitigating the "WHERE"
and "HOW" confusion, respectively

2 RELATEDWORK
2.1 Novel View Synthesis
Novel View Synthesis (NVS) is a fundamental problem in computer
vision that has been extensively researched for years [7, 8, 42].
The purpose of NVS is generating images of unseen viewpoints
by utilizing multiple images from seen viewpoints. Given multiple
seen viewpoints, a straightforward idea is to first reconstruct the 3D
scene and then project it onto 2D images under unseen poses [17,
18, 40]. For example, Penner and Zhang [22] directly transformed
the images into 3D space with the aid of initial depth images, while
more recent works had favored the use of deep neural networks
(DNN) [10, 12, 16]. Zhou et al. [40] employed a learning framework
for MultiPlane Images (MPI) representation, and [25] adopted a
transformer-based encoder and decoder to learn a scalable implicit
representation with attention architecture.

Recently, single-view input for NVS has gained traction as ob-
taining images from multiple viewpoints is not always feasible.
In this scenario, explicit or implicit 3D representations are often
learned from single-view input. [29, 34, 36]. Unlike multi-viewpoint
settings, other works synthesised novel views using purely image-
to-image transformations without 3D representations [26, 28]. De-
spite the significant progress made by NVS in both multi-view
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(b) Baseline Under Three Inputs (c) Existing work under Three Inputs

Position Uncertainty Prediction Uncertainty

(a) Baseline Under 100 Inputs (d) WaH-NeRF under Three Inputs

Figure 2: Uncertainty analysis under sparse inputs. We perform an analysis on the 128 sampling predictions of a random ray,
which includes the RGBMSE, Weight and Transparency. RGBMSE is the mean squared error loss between the RGB color of
each sampling position and the ground truth at corresponding pixel, representing the uncertainty of the color prediction. The
Weight and Transparency are intermediate outputs of the network, which approximate the position of the surface. We use the
width of the rectangular box to represent the uncertainty (or confusion) about position and prediction. Our results show that
WaH-NeRF successfully mitigates the confusion caused by sparse inputs, which is further elaborated in the Appendix.

and single-view settings, the emergence of Neural Radiance Fields
(NeRF) [19] has brought new research perspectives to this field due
to its simplicity and state-of-the-art performance. In contrast to
most of the aforementioned NVS works that only infer discrete
viewpoints, NeRF can render 360-degree continuous viewpoints
without explicit representations.

2.2 Neural Radiance Field from Sparse Inputs
NeRF [19] has shown a remarkable ability to produce photorealistic
renderings of unseen viewpoints under the supervision of images
from numerous input views. However, its performance drastically
decreases when the number of input views is limited. Recent works
addressed this challenge by regularizing rendered color or depth
images. DSNeRF [9] and DDNeRF [23] advocated the introduction
of depth supervision by structure-from-motion (sfm) to compensate
for the lack of information in sparse views, while DietNeRF [11]
and sinNeRF [35] adopted the consistency of semantic informa-
tion to constrain the optimization process of NeRF. However, sfm
struggles to function with large viewpoint gaps, and obtaining addi-
tional semantic supervision is often difficult. To address this, InfoN-
eRF [13] minimized ray entropy for adjacent rays via KL-divergence
to avoid introducing other information sources. Additionally, some
studies focused on adding unseen-viewpoints-constraints to endow
NeRF with prior information using geometry-smooth [20] or image-
warping [35] techniques. RegNeRF [20] proposed to regularize the
color predictions at unseen viewpoints by a pre-trained flow model
and demonstrated that mip-NeRF [1] produced more satisfactory
results than vanilla NeRF under sparse view settings.

Similar to NeRF-S, other works have focused on exploring the
relationship between the target viewpoints and few reference view-
points [3, 5, 15, 32, 37], called generalizable NeRF. Despite achieving

photorealistic renderings and fast generalization capabilities [31],
the assumption that the reference views and target view are adjacent-
viewpoints is overly idealized and often requires pre-training before
fine-tuning. In this work, we primarily focus on rendering a com-
plete scene under sparse inputs.

In light of the above discussion, we utilize mip-NeRF as the base-
line (see Sec. 3 for details) in this work. Instead of constraining
results after volume rendering, our approach delves into the root
cause of NeRF’s confusion from sparse inputs and employs a sam-
pling point self-alignment strategy along with a semi-supervised
paradigm to overcome this challenge during volume rendering. Ad-
ditionally, we follow the experimental settings of InfoNeRF [13],
rendering a complete scene without pre-training model and main-
stream image-warping techniques that are time-consuming during
the training phase.

3 METHOD
3.1 Background
3.1.1 NeRF. Neural Radiance Fields (NeRF) map the 3D location
x ∈ R3 and viewing direction d ∈ S2 of the spatial point sampled on
the ray to the view-invariant volume density 𝜎 ∈ [0,∞) and view-
dependent color 𝑐 ∈ [0, 1]3 of the point using learnable Multi-Layer
Perceptrons (MLPs).

𝑓𝜃

(
𝑓𝜓 (𝜓 (x)) , 𝜅 (d)

)
= (𝜎, 𝑐) , (1)

where 𝑓𝜃 and 𝑓𝜓 are MLPs, the learnable mapping functions, and
𝜓,𝜅 are the positional encoding for x, d, respectively.

3.1.2 mip-NeRF. Unlike NeRF’s ray sampling, mip-NeRF [1] in-
troduces conical frustum sampling to enhance the receptive field
of NeRF. Integrated positional encoding is adopted to replace𝜓,𝜅
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Figure 3: Overall architecture of WaH-NeRF. Firstly, for seen viewpoints, we propose a Deformable Sampling strategy and
compute an offset for each sampling conical frustum, supervised by a Weight-based Mutual Information Loss. In addition, we
adopt the MSE Loss with the ground truth to further constrain the training process. For unseen viewpoints, after perturbing
the camera pose of these viewpoints, we use the Pixel-Patch Correspondence Loss to regulate consistency with the unseen ray
for semi-supervised learning. Finally, the two modules are integrated together to mitigate the confusion of "Where" and "How".

in conical frustums with a multivariate Gaussian. In mip-NeRF,
the context of the points is taken into account during the volume
rendering for each pixel, compensating for the instability when
providing sparse viewpoints. Therefore, mip-NeRF serves as the
baseline in our work.

3.1.3 Volume Rendering. Once the 𝑐𝑖 and 𝜎𝑖 values for each point
on the rays or cones are obtained using Eq. (1), the pixel color value
𝐶 of the rendered image is approximated by an integral, which is
replaced by the quadrature along the rays or cones.

𝐶 (𝑟 ) =
𝑀∑︁
𝑖=1

(
𝑖−1∑︁
𝑗=1

𝜎 𝑗𝛿 𝑗 ) (1 − 𝑒−𝜎𝑖𝛿𝑖 )𝑐𝑖 , (2)

where𝑀 is the number of sampling points, 𝛿𝑖 states the distance
between the 𝑖𝑡ℎ point and its adjacent point, and 𝑟 represents a ray
or cone from an origin.

𝐿𝑜𝑠𝑠𝑀𝑆𝐸 =
∑︁
𝑟 ∈𝑅

𝐶 (𝑟 ) −𝐶𝐺𝑇 (𝑟 )
2
2 . (3)

Eq. (3) provides a Mean Square Error (MSE) loss to supervise
the entire rendering process, where 𝑅 is a set containing all rays or
cones and𝐶𝐺𝑇 (𝑟 ) represents the ground truth color value for𝐶 (𝑟 ).
It is worth noting that NeRF uses a combination of coarse-sampling
and fine-resampling for quadrature with non-sharing parameters,
whereas mip-NeRF shares the training parameters in two stages.

3.2 Overview
In the following, we introduceWaH-NeRF, a novel training strategy
aimed at mitigating the confusion discussed in Sec. 1 and analyzed

in Sec. 4. To explore the context of the cone, a patch-based strategy
is used throughout the training process for both seen and unseen
viewpoint-inputs. We then design a Deformable Sampling strategy
(in Sec. 3.3) and Semi-Supervised NeRF based on Pose perturbation
(in Sec. 3.4) to address the confusion of “WHERE to sample?” and
“HOW to predict?” in NeRF-S, as shown in Fig. 3. To accurately
supervise these two modules, we adopt a Weight-based Mutual
Information Loss and a Pixel-Patch Correspondence Loss, which
form two parallel branches during training.

3.3 Deformable Sampling Strategy
Recall that NeRF [19] introduces a coarse-to-fine hierarchical sam-
pling strategy, which achieves satisfactory results for rendering.
However, this strategy is flawed when handling sparse inputs for
the following reasons: 1) the difference between the training and
testing viewpoints leads to overfitting with a fixed sampling strat-
egy, and 2) the uncertainty of the surface resulting from coarse
sampling makes accurate fine-resampling under sparse input chal-
lenging. In general, this sampling drift creates confusion about
"Where to sample?", turning the task of predicting target surface
and color into an ill-posed problem for NeRF-S.

Deformable Sampling strategy. To determine "Where to
sample?", we propose a Deformable Sampling strategy inspired
by deformable convolution [6]. Instead of using a fixed sampling
aggregation strategy [2], our method predicts a position-dependent
and view-invariant offset for each conical frustum to adaptively
aggregate sampling-points to the target surface. Based on this off-
set, we deform the position of the sampling conical frustum along
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the sampling cone before volume rendering, encouraging more
frustums to approach the accurate surface. Specifically, we predict
the adaptive offset using an additional MLP layer with intermediate
features 𝐹𝜓 (x) ∈ R𝑀×𝑑 from 𝑓𝜓 in Eq. (1), where 𝑑 represents
feature dimension:

𝑂𝑓 𝑓 𝑠𝑒𝑡 = 𝜔0 × 𝐹𝜓 (x) + 𝑏0, (4)

where 𝑂𝑓 𝑓 𝑠𝑒𝑡 ∈ R𝑀×1, and 𝜔0 is the weight and 𝑏0 is the bias of
MLP layer. In order to prevent rendering collapse during training,
both 𝜔0 and 𝑏0 are initialized to 10−7. Subsequently, the original
sampled conical frustum shifts by the predicted 𝑂𝑓 𝑓 𝑠𝑒𝑡 along the
cone for adaptive sampling, which is utilized for volume rendering
as in Eq. (2). It should be noted that the Deformable Sampling strat-
egy not applied to unseen perspectives to ensure training stability.

In summary, Deformable Sampling strategy can be regarded as a
more general sampling strategy, and vanilla NeRF [19] is a special
case where 𝑂𝑓 𝑓 𝑠𝑒𝑡 is fixed to 0.

Weight-based Mutual Information Loss. However, training
𝜔0 and 𝑏0 from scratch is sub-optimal in practice since low-weight
sample conical frustums struggle to offset towards the surface. To
address this, we explore the correlation between the predicted
Offset and weight (𝑤 ) and use it as prior knowledge for additional
supervision. Here, 𝑤 approximates the probability of the surface
in NeRF [19], as shown in Eq. (5). Intuitively, when the sampled
conical frustums are far from the target surface,𝑤 decreases and
the Offset increases. Therefore, the predicted Offset has a negative
correlation with the non-zero part of𝑤 .

𝑤𝑖 = (
𝑖−1∑︁
𝑗=1

𝜎 𝑗𝛿 𝑗 ) (1 − 𝑒−𝜎𝑖𝛿𝑖 ) . (5)

Based on this analysis, we design a Weight-based Mutual In-
formation Loss, a natural information-theoretic measure of the
variables independence. Specifically, the mutual information of
𝑂𝑓 𝑓 𝑠𝑒𝑡 and 1

𝑤 is expressed as

𝐼

(
1

𝑤 + 𝜀
;𝑂𝑓 𝑓 𝑠𝑒𝑡

)
= 𝐻

(
1

𝑤 + 𝜀

)
− 𝐻

(
1

𝑤 + 𝜀
|𝑂𝑓 𝑓 𝑠𝑒𝑡

)
= 𝐻 (𝑂𝑓 𝑓 𝑠𝑒𝑡) − 𝐻

(
𝑂𝑓 𝑓 𝑠𝑒𝑡 | 1

𝑤 + 𝜀

)
,

(6)

where 𝜀 is set to 5 × 10−4, and 𝐻 denotes entropy. The correlation
between 𝑂𝑓 𝑓 𝑠𝑒𝑡 and 1

𝑤 increases through minimizing the Weight-
based Mutual Information Loss. Inspired by [39], we further express
𝐿𝑜𝑠𝑠𝑀𝐼 by taking into account the correlation between sampling
conical frustums,

𝐿𝑜𝑠𝑠𝑀𝐼 = −
∑︁
𝑟 ∈𝑅

𝐼

(
1

𝑤 + 𝜀
;𝑂

)
𝑚𝑎𝑠𝑘

, (7)

where𝑚𝑎𝑠𝑘 is used to remove positions where𝑤 is close to zero.
The masked positions are ignored for 𝐿𝑜𝑠𝑠𝑀𝐼 , as the offset is mean-
ingless for the positions too far from the surface. In addition, we
introduce a distortion loss 𝐿𝑜𝑠𝑠𝑑𝑖𝑠𝑡 [2] to further constrain the offset
conical frustums approaching target surface. In summary, 𝐿𝑂𝑓 𝑓 𝑠𝑒𝑡

be expressed as

𝐿𝑜𝑠𝑠𝑂𝑓 𝑓 𝑠𝑒𝑡 = 𝜆𝐿𝑜𝑠𝑠𝑀𝐼 + 𝐿𝑜𝑠𝑠𝑑𝑖𝑠𝑡 , (8)

where 𝜆 is a hyperparameter for weight of 𝐿𝑜𝑠𝑠𝑀𝐼 , to 5 × 10−3.

Perturbated Rays

Unseen Ray

SSL based on Pose PerturbationPixel-Patch Correspondence Loss

PPCLoss Eq.(11)

Patch

Eq.(9)

Figure 4: Semi-Supervised NeRF based on pose perturbation.
We perturb the camera position to augment limited data,
and employ a Pixel-Patch Correspondence Loss as a local
consistency regularization to supervise unseen ray.

3.4 Semi-Supervised NeRF on Pose Perturbation
Addressing the confusion of “WHERE to sample?” in NeRF-S may
be helpful, but accurate sampling predictions remain a challenge
under sparse views due to overfitting and insufficient information.
Therefore, it is crucial to address the confusion of “HOW to pre-
dict?” in NeRF-S. Intuitively, introducing additional supervision,
as proposed in [35] and [20], could alleviate this confusion.

In image processing, when labeled data is scarce and a vast
amount of unlabeled data is available, the semi-supervised par-
adigm [30, 41] can improve performance by effectively utilizing
unlabeled data for supervision. Inspired by semi-supervised learn-
ing (SSL), researchers have treated seen viewpoints with accurate
camera poses as labeled data, while considering unseen viewpoints
as unlabeled data. By generating pseudo-label images of the un-
seen perspectives, they provide additional supervision for NeRF.
However, the existing method for generating these pseudo-labels,
which relies on image warping [35], is time-consuming and limited
to small viewing changes.

Semi-Supervised NeRF. We propose a Semi-Supervised NeRF
Paradigm based on pose perturbation to assist prediction without
image warping, as shown in Fig. 4. Thanks to NeRF’s implicit repre-
sentation, it can seamlessly generate continuous views. Building on
this advantage, our semi-supervised paradigm employs a straight-
forward scheme that uses consistency regularization to explore the
smoothness between the unseen ray and perturbed rays.

Pose Perturbation. The smooth perturbation of the NeRF for
unseen rays is a non-trivial discussion. Aug-NeRF [4] adopted per-
turbations into three distinct levels, including input coordinate,
intermediate feature and pre-rendering output for data augmen-
tations. However, for the semi-supervised paradigm, such local
perturbations fail to reflect the smoothness of the rendering pro-
cess. Instead, we propose a global perturbation method by slightly
moving or rotating the camera pose and leveraging the local correla-
tion between adjacent poses to constrain the network training. Due
to the minor perturbation, there is theoretical consistency between
the original unseen ray and the perturbed unseen rays. The con-
sistency regularization not only ensures the network’s robustness
against discrepancies between seen and unseen viewpoints, but
also improves the local smoothness of the adjacent rendered rays.
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Specifically, unseen viewpoints are randomly captured on a fixed-
radius sphere oriented towards the spherical render target. It is well
known that any position on an arbitrary sphere can be determined
by three variables: the radius 𝐹 controlling the sphere’s size, and
the azimuth angle 𝜑 and polar angle Γ defining the position on the
sphere. Based on this prior knowledge, three levels of perturba-
tion are performed on the camera pose, 𝐹 , 𝜑 and Γ, which prove
to be significant in our ablation experiments. We define random
perturbation as

𝐹 = 𝐹 + 𝜏𝐹 ;𝜑 = 𝜑 + 𝜏𝜑 ; Γ̂ = Γ + 𝜏Γ, (9)

where 𝜏𝐹 , 𝜏𝜑 , and 𝜏Γ are perturbation values. Based on the unseen-
perturbed viewpoints pair, we sample the corresponding unseen-
perturbed rays pair. Subsequently, the perturbed rays will be input
to the NeRF-network simultaneously with the corresponding origi-
nal unseen ray.

Pixel-Patch Correspondence Loss. A straightforward idea
for supervision in our semi-supervised paradigm is to constrain
the consistency of the rendered results between unseen ray and
perturbation rays at the pixel level,

𝐿𝑜𝑠𝑠𝑆𝑆𝐿 =

𝑃∑︁
𝑝=0

∑︁
𝑟 ∈𝑅

𝐶𝑢𝑛𝑠𝑒𝑒𝑛 (𝑟 ) −𝐶
𝑝

𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛
(𝑟 )

2
2
, (10)

where 𝑃 indicates the amount of perturbation for an unseen ray.
Despite the global similarity of the rendered images, vanilla MSE
loss struggles to achieve pixel-wise (local) correspondence for con-
sistency regularization, due to the mismatches caused by minor
camera pose perturbations.

To explore local consistency, the Pixel-Patch Correspondence
Loss (PPC) is introduced to alleviate unregistered pixel-wise corre-
spondences from perturbation and enhance patch-wise smoothness.
Thanks to the patch-wise training paradigm, Pixel-Patch Correspon-
dence loss is easily accessible. We employ the average MSE loss
between each unseen ray and all rays of the corresponding patch
around the perturbed rays,

𝐿𝑜𝑠𝑠𝑃𝑃𝐶 =

𝑃∑︁
𝑝=0

∑︁
𝑟 ∈𝑅

𝑃𝑆×𝑃𝑆∑︁
𝑖=0

𝐶𝑢𝑛𝑠𝑒𝑒𝑛 (𝑟 ) −

𝐶
𝑝

𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 (𝑖 ) (𝑟 )
2
2
× 1
𝑃𝑆 × 𝑃𝑆

,

(11)

where 𝐶𝑝

𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 (𝑖 ) (𝑟 ) is the 𝑖
𝑡ℎ pixel (ray) in the perturbed

patch corresponding 𝑟 , and 𝑃𝑆 is the patch size. It is worth noting
that the consistency regularization not only applies to color value
predictions, but also to depth predictions. Therefore, the overall
Pixel-Patch Correspondence Loss is defined as the sum of the RGB
and depth losses, i.e., 𝐿𝑜𝑠𝑠𝑃𝑃𝐶 = 𝐿𝑜𝑠𝑠𝑃𝑃𝐶𝑅𝐺𝐵

+ 𝐿𝑜𝑠𝑠𝑃𝑃𝐶𝐷
. This is

demonstrated in the Appendix ablation experiment section.

3.5 Loss Function
Given a set of 𝑁 seen viewpoints and their associated images, our
work combines the Deformable Sampling strategy with the Semi-
Supervised NeRF Paradigm to iteratively optimize the learnable
parameters 𝜃 by evaluating the rendered images and calculating
the loss function.

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝑀𝑆𝐸 + 𝜇𝐿𝑜𝑠𝑠𝑂𝑓 𝑓 𝑠𝑒𝑡 + 𝜈𝐿𝑜𝑠𝑠𝑃𝑃𝐶 + 𝐿𝑜𝑠𝑠𝑠𝑚𝑜𝑜𝑡ℎ . (12)

WaH-NeRFBaseline RegNeRF GT

Training Viewpoints

Testing Viewpoints

Figure 5: Qualitative results from lego scene. We choose some
testing viewpoints that are significantly different from the
training viewpoints under our setting.

As in [20], 𝐿𝑜𝑠𝑠𝑠𝑚𝑜𝑜𝑡ℎ is introduced to improve the smoothness of
depth predictions for unseen viewpoints, which has proven effective
in NeRF-S. Hyper-parameters 𝜇 and 𝜈 are used to weight the loss
terms. We define 𝜇 = 0.5 and 𝜈 = 0.5, whose superiority is proved
in the Appendix. In practice, each item in Eq. (12) includes two
stages of loss: coarse-sampling loss and fine-resampling loss. During
training, we set the coefficient of the coarse-sampling loss to 0.1.

4 EXPERIMENTS
4.1 Datasets
In order to verify the superiority ofWaH-NeRF and the effectiveness
of each module, we conduct comparative and ablation experiments
on the Realistic Synthetic 360° [19] and LLFF [19] datasets.
Realistic Synthetic 360° is a classic dataset of NeRF, which is
widely used in NeRF and its derivative works. It contains 8 synthetic
objects with viewpoints sampled on the upper hemisphere and
coverages 360°. Each scene has 100 views for training and 200 views
for testing, with all images at 800×800 resolution. In our task setting,
due to the wide range of viewpoints, we use this dataset as the main
benchmark in our work.
LLFF consists of 8 complex scenes, each containing 20-62 images
with 1008×756 resolution. Compared with Realistic Synthetic 360°,
the real-world dataset LLFF is more complex in real-world but the
viewpoints are relatively close to each other.

4.2 Implementation and Evaluation
Implementation details.We implement our code on top of the
Pytorch [21] mip-NeRF 1. We optimize using Adam [14] with an

1https://github.com/bebeal/mip-NeRF-pytorch
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Table 1: Mean PSNR and standard deviations of every scene on the Realistic Synthetic 360°dataset under three inputs.

Method Lego Chair Drums Ficus Hotdog Materials Mic Ship

NeRF, 100views 32.54 33.00 25.01 30.13 36.18 29.62 32.91 28.65

NeRF [19], 3views 8.63±1.21 8.45±0.33 7.28±0.51 10.23±1.73 7.89±0.42 9.27±2.10 11.52±1.98 6.58±0.75
mip-NeRF [1], 3views 17.23±2.84 17.31±1.94 14.33±0.85 18.47±2.28 17.35±1.64 15.51±2.83 18.02±2.17 15.33±3.31
IBRNet [32] (CVPR 2021) 12.60±1.53 12.33±0.94 9.89±1.22 15.09±3.21 11.18±2.48 10.47±3.05 14.77±1.58 13.24±3.09
pixelNeRF [37] (CVPR 2021) 13.22±3.17 11.26±2.75 11.44±1.65 15.59±2.99 12.41±3.88 10.32±4.36 15.00±2.86 13.15±3.26
DietNeRF [11] (ICCV 2021) 14.98±2.81 15.11±2.25 12.43±0.97 16.39±3.10 15.21±3.19 13.48±2.64 14.59±2.81 14.41±3.22
InfoNeRF [13] (CVPR 2022) 16.59±2.45 16.88±2.04 12.16±0.86 18.20±2.04 17.42±3.22 14.77±2.98 16.73±2.94 14.99±3.05
RegNeRF [20] (CVPR 2022) 17.82±2.09 17.96±1.77 14.20±0.91 19.01±1.74 17.98±3.69 15.35±3.21 18.11±2.03 15.82±2.79
WaH-NeRF (ours) 18.78±1.98 18.48±1.96 15.39±0.96 19.52±1.70 19.01±3.23 16.84±2.45 18.95±1.75 16.20±2.79
WaH-NeRF† (ours) 20.27±1.90 20.53±1.69 16.77±0.87 21.83±1.40 22.71±2.66 18.92±2.11 20.18±1.68 17.91±2.63

Table 2: Mean PSNR, SSIM and LPIPS in all scenes for quanti-
tative evaluations and component analysis for Realistic Syn-
thetic 360° benchmark under three inputs. DS and SSN rep-
resent Deformable Sampling strategy and Semi-Supervised
NeRF Paradigm, respectively.

Method DS SSN PSNR ↑ SSIM ↑ LPIPS ↓
NeRF,100views 31.01 0.947 0.081

NeRF,3views 8.73 0.445 0.580
mip-NeRF,3views 16.69 0.708 0.283

IBRNet 12.44 0.542 0.403
pixelNeRF 12.80 0.587 0.328
DietNeRF 14.58 0.608 0.317

InfoNeRF 15.97 0.647 0.291
RegNeRF 17.03 0.720 0.278

baseline 16.72 0.711 0.290
WaH-NeRF ✓ 17.51 0.768 0.246
WaH-NeRF ✓ 17.69 0.773 0.237
WaH-NeRF (ours) ✓ ✓ 17.90 0.776 0.230
WaH-NeRF† (ours) ✓ ✓ 19.89 0.809 0.177

exponential learning rate decay from 10−3 to 5 × 10−5, decaying
exponentially by a factor of 10 at every 2500 iterations. For the
Realistic Synthetic 360°, we train for a total of 20,000 iterations
and save the model every 5,000 iterations. We set the patch size of
the seen and unseen viewpoints to be 8x8, and the batch size to
16, which means that both input 1024 rays, |𝑅 | = 1024. Following
the experimental setup of InfoNeRF [13], under 𝑁 = 3 setting, we
randomly select three viewpoints for training, and all comparison
experiments use the same three viewpoints to ensure fairness. Our
experiments are conducted with a GeForce RTX 3090 GPU.
Metrics. We employ the standard image quality metrics, includ-
ing Peak Signal to-Noise Ratio (PSNR) and Structural SIMilarity
(SSIM) [33], to evaluate rendering quality for novel viewpoints. Ad-
ditionally, we introduce learned perceptual image patch similarity
(LPIPS) [38] as a perceptual metric. For all metrics, we calculate the
mean and standard deviation for comparative experiments.
Baseline.We use the Pytorch reimplementation of mip-NeRF [1] as
the baseline network, which has been shown to outperform vanilla
NeRF in our experiments. We further integrate a patch-based train-
ing strategy into the mip-NeRF as the baseline. In the comparative
experiments, we evaluate our method against vanilla NeRF [19]

Position Uncertainty Prediction Uncertainty

(b) Baseline + DS Under Three Inputs (c) Wah-NeRF under Three Inputs(a) Baseline Under Three Inputs

Figure 6: Qualitatively demonstrate that the proposed mod-
ule can effectively alleviate uncertainty of surface position
and prediction at hotdog scene.

and mip-NeRF [1] under sparse inputs, and the state-of-the-art
models under our setting, including InfoNeRF [13], DietNeRF [11],
DSNeRF [9]2 and RegNeRF [20]. Additionally, we compare our
approach against some recent works, namely IBRNet [32] and pix-
elNeRF [37] on the adjacent-viewpoints setting, which has been
shown to outperform traditional NVS methods. For a detailed de-
scription about these, see Sec. 2 and Appendix.

4.3 Experiment and Analysis
Quantitative evaluations results. Table 1 and Table 2 present the
performance comparison between our proposed WaH-NeRF and
the leading methods on the Realistic Synthetic 360°dataset. It can
be observed that WaH-NeRF achieves state-of-the-art performance
under three inputs (𝑁 = 3) for each scene. Specifically, summarizing
from Table 2, WaH-NeRF surpasses the previous state-of-the-art
method (i.e., RegNeRF) by 0.87 (PSNR), 0.046 (SSIM) and 0.048
(LPIPS). Additionally, compared with the vanilla NeRF and mip-
NeRF, our WaH-NeRF achieves significant improvement, i.e.,1.21
(PSNR), 0.068 (SSIM) and 0.053 (LPIPS) for mip-NeRF under our

2Due to the use of sfm and COLMAP, DSNeRF is only used for comparative experiments
on the LLFF.
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Table 3: Mean PSNRs, SSIM and LPIPS in all scenes for loss
function ablation experiment on Realistic Synthetic 360°
benchmark from three inputs.

Method PSNR ↑ SSIM ↑ LPIPS ↓
w/o 𝐿𝑃𝑃𝐶 17.73 0.773 0.239
w/o 𝐿𝑂𝑓 𝑓 𝑠𝑒𝑡 17.30 0.742 0.265

WaHNeRF (ours) 17.90 0.776 0.230

settings. Moreover, we also conduct experiments under different
numbers of inputs in the following section. These results demon-
strate the effectiveness and superiority of our proposed WaH-NeRF
over the existing state-of-the-art methods. Here, WaH-NeRF† rep-
resents the WaH-NeRF’s rendering performance after masking the
background. This shows that WaH-NeRF can achieve satisfactory
performance for the foreground object with only three inputs.
Qualitative evaluation results. Fig. 5 reports qualitative results
rendered by WaH-NeRF on the lego scene, providing additional
evidence of its effectiveness. Intuitively, compared with the state-
of-the-art RegNeRF [20] and the baseline, WaH-NeRF shows a clear
advantage in mitigating confusion and achieving better rendering
results for surface and color. More quantitative results in other
scenes can be found in the Appendix.
Component analysis. Our proposed WaH-NeRF consists of two
key components: the Deformable Sampling strategy and the Semi-
Supervised NeRF on pose perturbation. We validate the effective-
ness of each component and present the results in Table 2. It can
be summarized that the Semi-Supervised NeRF Paradigm plays the
important role in the rendering performance improvement while
the Deformable Sampling strategy is indispensable. By combining
both Semi-Supervised NeRF Paradigm and Deformable Sampling
strategy, WaH-NeRF achieves a substantial improvement of 1.18
(PSNR), 0.065 (SSIM), and 0.060 (LPIPS) over the baseline model.

To further explain the benefits of the proposed components
during volume rendering, as shown in Fig. 6, we qualitatively
demonstrate how the Deformable Sampling strategy and the Semi-
SupervisedNeRF Paradigmhelp to alleviate the confusion of “WHERE
to sample?” and “HOW to predict?" in NeRF-S. Additional analyses
and quantitative results are available in the Appendix.
Loss functions analysis. 𝐿𝑂𝑓 𝑓 𝑠𝑒𝑡 and 𝐿𝑃𝑃𝐶 are important compo-
nents in our loss function. In Table 3, the significant contribution
of both losses to the network is evident, with 𝐿𝑂𝑓 𝑓 𝑠𝑒𝑡 being par-
ticularly noteworthy. This could be attributed to the difficulty of
training the 𝑂𝑓 𝑓 𝑠𝑒𝑡 from scratch without the aid of 𝐿𝑂𝑓 𝑓 𝑠𝑒𝑡 .
Quantitative and qualitative results for LLFF. Table 4 shows
the quantitative comparison between the previous state-of-the-art
methods and WaH-NeRF on the LLFF dataset, where FT represent-
ing Fine-Tuning on per scene [20]. Despite the LLFF dataset being
more challenging due to its larger scene size and the presence of
only nearby viewpoints, WaH-NeRF also attains state-of-the-art
results. This demonstrates the superiority of method regardless of
the task scenario. Fig. 7 showcase some qualitative results rendered
by WaH-NeRF on the room scene, providing further evidence of its
effectiveness. Additional quantitative results for other LLFF scenes
are available in the Appendix.

Baseline WaH-NeRF GT

Figure 7: Some qualitative results of the baseline and WaH-
NeRF under LLFF dataset (room scene) in the 3-Inputs setting.

Table 4: Mean PSNRs, SSIM and LPIPS in all scenes for quan-
titative evaluations for LLFF benchmark.

Method 𝑁 Setting PSNR ↑ SSIM ↑ LPIPS ↓
NeRF 100 26.50 0.811 0.250

pixelNeRF 3 Trained on
DTU and FT

16.17 0.438 0.512
MVSNeRF 3 17.88 0.584 0.327

mip-NeRF 3

Optimized
per Scene

14.62 0.351 0.495
DietNeRF 3 14.94 0.370 0.496
InfoNeRF 3 14.37 0.349 0.457
DSNeRF 3 18.51 0.558 0.338
RegNeRF 3 19.08 0.587 0.336
WaH-NeRF 3 19.23 0.587 0.312

5 CONCLUSION
In this paper, we propose a novel training paradigm for Neural Ra-
diance Fields from sparse inputs, termd as WaH-NeRF. We observed
that NeRF’s performance significantly declines as the number of
input views decreases. Our analysis attribute this phenomenon
to the confusion of "WHERE to sample?" and "HOW to predict?"
in NeRF-S. To address this confusion, we introduce a Deformable
Sampling strategy and a Semi-Supervised NeRF learning Paradigm
based on pose perturbation, leveraging the Pixel-Patch Correspon-
dence Loss and the Wight-based Mutual Information Loss in the
training process. Extensive experiments on two NeRF benchmarks
demonstrate that our proposed WaH-NeRF achieves state-of-the-
art performance under sparse input settings, as supported by both
quantitative and qualitative results. We believe that the confusion
analysis for NeRF-S and the semi-supervised NeRF based on con-
sistency regularization will inspire future research in this field.
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