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Abstract

Few-shot Class-Incremental Learning (FSCIL) challenges
models to adapt to new classes with limited sam-
ples, presenting greater difficulties than traditional class-
incremental learning. While existing approaches rely heav-
ily on visual models and require additional training dur-
ing base or incremental phases, we propose a training-free
framework that leverages pre-trained visual-language mod-
els like CLIP. At the core of our approach is a novel Bi-
level Modality Calibration (BiMC) strategy. Our frame-
work initially performs intra-modal calibration, combin-
ing LLM-generated fine-grained category descriptions with
visual prototypes from the base session to achieve pre-
cise classifier estimation. This is further complemented
by inter-modal calibration that fuses pre-trained linguis-
tic knowledge with task-specific visual priors to mitigate
modality-specific biases. To enhance prediction robust-
ness, we introduce additional metrics and strategies that
maximize the utilization of limited data. Extensive ex-
perimental results demonstrate that our approach signifi-
cantly outperforms existing methods. Code is available at:
https://github.com/yychen016/BiMC.

1. Introduction
The rapid advancement of artificial intelligence has
propelled deep neural networks to achieve remarkable
progress. However, these models often struggle with catas-
trophic forgetting when faced with dynamically changing
environments, impeding their ability to learn sequential
tasks effectively. Class-Incremental Learning (CIL) can be
a potential solution to this challenge. Yet, in practical set-
tings, researchers frequently encounter a scarcity of train-
ing data during the incremental phase, leading to sample
sparsity issues. Consequently, Few-Shot Class-Incremental
Learning (FSCIL) [31] has recently emerged as a more re-
alistic scenario, better reflecting real-world constraints.
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Figure 1. Model updating paradigms in FSCIL. (a) Continuous
model updates during incremental phases. (b) Leveraging the base
task to learn a generalizable model. (c) Our proposed framework:
training-free in both base and incremental sessions.

Current FSCIL methods can be broadly categorized into
two paradigms: the continual fine-tuning paradigm and the
incremental-session freezing paradigm, as shown in Fig-
ure 1 (a) and (b). The former [4, 21, 27, 43] utilizes limited
samples to continuously update the model, enhancing its
plasticity. Conversely, the latter [22, 35, 44, 48] focuses on
learning robust representations during the base task, which
are then generalized to incremental tasks, prioritizing sta-
bility by avoiding subsequent model updates. Despite their
distinct approaches, both paradigms necessitate additional
training to adapt to new tasks, presenting ongoing chal-
lenges in resource efficiency and model adaptability.

The emergence of large-scale models has shifted the
landscape of representation learning. Vision-language mod-
els like CLIP [24], trained on a large number of image-
text pairs, excel in zero-shot tasks. However, fine-tuning is
computationally expensive and may compromise general-
ization, especially with limited data [14, 39]. While recent
approaches like prompt tuning [46, 47] and low-rank adap-
tation [9] offer more efficient alternatives, they still demand
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additional training. This raises a crucial question: How can
we effectively leverage pre-trained knowledge and domain-
specific visual priors to adapt the large-scale model using
few samples without additional training?

While CLIP is widely used for cross-modal retrieval in
visual categorization, it overlooks the potential of intra-
modal recognition, akin to traditional purely visual mod-
els, such as CNN [30, 41]. We believe that CLIP’s vi-
sual prototypes can effectively complement zero-shot tex-
tual classifiers, serving as domain-specific priors, particu-
larly in addressing two major challenges in FSCIL tasks:
catastrophic forgetting and overfitting. Building on this in-
sight, we introduce Bi-level Modality Calibration (BiMC),
a simple yet effective framework that treats CLIP as a black-
box model and operates without additional training, thereby
avoiding the parameter updates that typically cause forget-
ting. Our framework incorporates both intra-modal and
inter-modal calibration strategies to enhance CLIP’s clas-
sification accuracy. For intra-modal calibration, we lever-
age LLM-generated fine-grained category descriptions in
the textual domain to improve zero-shot classifier discrim-
ination, while using base session prototypes in the visual
domain to refine new class prototypes affected by sam-
ple scarcity. Inter-modal calibration combines pre-trained
linguistic knowledge with task-aware visual priors to re-
duce modal biases and overfitting. The framework is fur-
ther enhanced with an anisotropic covariance metric and
a cross-modal category-conditioned nearest-neighbor met-
ric, implementing the final classifier through masked en-
semble inference. Extensive experiments demonstrate that
our method achieves competitive performance without ad-
ditional training.

Our contributions are summarized as follows:
• We propose a novel training-free FSCIL framework that

achieves continual model adaptation by treating vision-
language models as black boxes, significantly enhancing
practicality for real-world applications.

• We develop a bi-level modality calibration approach com-
bining intra-modal and inter-modal strategies to enhance
classifier accuracy across both modalities. This approach
is strengthened by an innovative visual covariance metric
and a category-conditioned nearest-neighbor metric, cul-
minating in a robust masked ensemble inference strategy.

• We demonstrate the effectiveness of our framework
through extensive experiments on standard benchmarks,
where it not only achieves competitive performance but
also outperforms supervised training methods in several
scenarios, despite requiring no additional training.

2. Related work
Few-Shot Class-Incremental Learning. Few-Shot Class-
Incremental Learning (FSCIL) challenges models to adapt

continuously using minimal samples. Existing approaches
can be categorized into three main groups: representation-
based methods [1, 2, 12, 18, 22, 27, 30, 38, 44], which
focus on optimizing feature representations; dynamic-
architecture-based methods [31, 41], which adapt model
structures to accommodate new classes; and knowledge-
distillation-based methods [4, 7, 15], which transfer knowl-
edge from previous tasks to new ones. Notable examples
include CEC [41], which employs an evolving graph model
for classifier optimization, and FACT [44] and SAVC [30],
which introduce virtual categories as placeholders for for-
ward compatibility. In contrast, our approach leverages a
pre-trained vision-language model, eliminating the need for
additional learning on the base session.

Class-Incremental Learning via Pre-Trained Mod-
els. Recent trends in incremental learning focus on effec-
tively utilizing pre-trained models as backbones for down-
stream tasks. Early works primarily used prompt-based
methods [11, 28, 34, 36, 37], introducing learnable prompt
parameters for task adaptation. Other approaches have
employed adapters [45] or LoRA [9] to facilitate adap-
tation [17, 40, 45]. While these methods use efficient
parameter-tuning techniques, they still require further train-
ing. Our approach, however, leverages both vision and lan-
guage modalities to enable ongoing model adaptation with-
out gradient updates.

Language-Assisted Classification. Linguistic infor-
mation has been increasingly utilized in various visual
tasks. Some studies have used linguistic cues to guide
visual classification [33, 42], while others have leveraged
Large Language Models (LLMs) to generate rich descrip-
tive text [20, 23, 26]. In continual learning, several works
have exploited linguistic guidance [13, 19]. Within FSCIL,
methods like [2, 4, 21] also utilize linguistic information.
However, these approaches have limitations: some [2] use
distillation techniques on smaller visual models with lin-
guistic knowledge as a regularization term, potentially lim-
iting scalability and flexibility. Others [4, 21] rely on com-
plex and often redundant architectural designs, making im-
plementation challenging and inefficient. In contrast, our
approach addresses these limitations by proposing a sim-
pler, more efficient framework that effectively integrates
linguistic and visual information.

3. Method

3.1. Preliminary

In FSCIL, a model continuously adapts to a sequence of
sessions S = {D0,D1, . . . ,DT }. Each session Dt =

{(xi, yi)}Nt

i=1 consists of training data with a category space
C train
t = Yt, where Nt represents the number of samples in

the t-th session. The base session D0 contains a substantial
number of categories and samples, while subsequent incre-
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Figure 2. Overview of our framework. In each task adaptation phase, we construct a calibrated classifier through our proposed bi-level
calibration framework, which involves intra-modal calibration and inter-modal calibration. To enhance performance, we introduce a
globally shared covariance metric for visual feature modeling, complemented by a category-conditioned nearest-neighbor scoring strategy.

mental sessions Dt for t > 0 contain only a few training
samples per category, formally expressed as N0 ≫ Nt.

The categories across different sessions are mutually
exclusive, meaning that for any different i, j ∈ [0, T ],
Yi ∩ Yj = ∅. Furthermore, during the training of the cur-
rent session, data from previous sessions is not accessible.
At the testing phase of the t-th session, the model evalu-
ates against all previously encountered categories, with the
cumulative category set defined as Yt =

⋃t
j=0 Yj . Conse-

quently, the test category space is given by C test
t = Yt.

3.2. Bi-Level calibration framework

Our proposed training-free framework builds upon
CLIP [24] and incorporates two essential components:
intra-modal and inter-modal calibration (see Figure 2a).

3.2.1 Intra-modal classifier calibration

In its standard usage, CLIP relies on simple prompt
templates, (e.g., "a photo of a [CLS].") to con-
struct zero-shot classifiers for visual tasks. However, this
category-agnostic approach has inherent limitations. The
generic nature of these templates fails to capture category-
specific nuances, making them particularly inadequate for
fine-grained classification tasks where detailed feature dis-
crimination is crucial. A single, static template cannot
effectively characterize the diverse visual characteristics
within each category, especially when subtle distinctions
between categories are essential.

To overcome these limitations, we leverage Large Lan-
guage Models (LLMs) to generate dynamic, category-
specific descriptions. These LLM-generated descriptions
provide richer, more discriminative semantic representa-
tions for each category, enhancing the model’s capacity to
capture fine-grained features. We integrate this enhanced
semantic information through an intra-modal calibration
strategy within the textual modality:

µ̃T
c = (1− λT )wc + λT

 1

nc

nc∑
j=1

g (tc,j)

∥g (tc,j) ∥2

 . (1)

In this formulation, λT controls the intensity of intra-modal
calibration within the text modality, nc denotes the num-
ber of descriptions for category c, g(·) represents the text
encoder, tc,j is the j-th LLM-generated description for cat-
egory c, µ̃T

c is the calibrated textual prototype, and wc de-
notes the original CLIP Zero-Shot classifier weight for class
c. This calibration mechanism preserves the robust general-
ization capabilities of the CLIP Zero-Shot classifier while
incorporating fine-grained, category-specific semantic in-
formation. The latter term in Eq. (1) serves as a seman-
tically enriched category description center, enhancing the
model’s discriminative power.

In the FSCIL context, prototype-based classifiers are
commonly employed, where the accuracy of prototype esti-
mation directly impacts performance. During the base ses-
sion, the abundance of samples allows for precise estima-
tion of class prototypes. However, in incremental sessions
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that introduce new classes, the limited number of samples
inevitably leads to biased estimates of new class prototypes.
Drawing inspiration from TEEN [35], we leverage the accu-
rately estimated prototype weights of base classes to facil-
itate intra-modality calibration on the prototypes of incom-
ing new classes within the visual modality.

For a given class c, we first utilize the encoded training
image data to obtain the naive visual prototype:

µI
c =

1

mc

mc∑
j=1

f (xc,j)

∥f (xc,j) ∥2
, (2)

where f(·) is the visual encoder, mc is the number of im-
ages in class c, and xc,j is the j-th image belonging to cat-
egory c. Due to the inaccuracy in visual prototype estima-
tion during the incremental sessions, the prototypes from
the base session are used to recalibrate the new class pro-
totypes by leveraging the similarity relationship between
them. This process can be formulated as:

µ̃I
c =


µI

c , t = 0

(1− λI)µ
I
c + λI

|Y0|∑
b=1

sb,cµ
I
b , t > 0,

(3)

where, t represents the task identifier, λI controls the
strength of the visual intra-modal calibration, and sb,c de-
notes the normalized cosine similarity between the visual
prototypes of class b (from the base classes) and class c. The
similarity sb,c is defined as: sb,c = eτ·⟨µb,µc⟩∑|Y0|

i=1 eτ·⟨µi,µc⟩
. Here,

⟨·, ·⟩ represents the cosine similarity, and τ is the tempera-
ture scaling parameter.

Through this visual intra-modality calibration process,
the prototypes of the new classes are adjusted to align more
closely with the well-calibrated base class prototypes, al-
lowing the new class prototypes to partially inherit the dis-
criminative properties of the base class prototypes.

3.2.2 Inter-modal classifier calibration

Following intra-modal calibration, two classifier achieves
enhanced accuracy within its respective modality. How-
ever, we posit that their full potential remains unrealized
when operating in isolation. This is due to the fact that clas-
sifiers operating exclusively on linguistic data derive their
knowledge from pre-trained models and lack explicit down-
stream knowledge for visual tasks. Conversely, classifiers
functioning solely within the visual domain serve as met-
rics within the visual sub-feature space but are deficient in
semantic understanding. Recognizing the complementary
nature of these two modalities, we propose a training-free
inter-modal calibration strategy, allowing domain-relevant
downstream visual prior to guide domain-agnostic pre-
trained linguistic knowledge. Formally, this process can be

described as:

µc = βµ̃T
c + (1− β)µ̃I

c . (4)

Here, µc is the inter-modal calibrated classifier, and β is
the calibration coefficient. During inference, we use cosine
similarity to calculate the similarity between the sample fea-
tures f (x) and the mixed category center:

scalib
c =

f (x)
⊤
µc

∥f (x) ∥2 · ∥µc∥2
. (5)

This inter-modal calibration strategy effectively com-
bines the strengths of both linguistic and visual modalities.
It helps to enhance the overall classification performance by
creating a more robust and comprehensive classifier that can
better capture the nuances of visual tasks while maintaining
a strong semantic understanding.

3.3. Semantic and covariance-enhanced metric

While our previous metrics effectively integrate linguistic
and visual information and mitigate modal bias, they pri-
marily measure sample distances from distribution centers.
This isotropic approach, despite its simplicity, struggles to
capture higher-order information and complex data relation-
ships. To address these limitations, we propose leveraging
statistical information from existing data for more compre-
hensive and efficient measurements, as shown in Figure 2b.

3.3.1 Modeling global covariance

Inspired by FeCAM [8], we introduce an anisotropic covari-
ance metric to fully utilize the visual modality’s statistical
information. For a session t, we compute its covariance
matrix Σt using image embeddings f(x) of all image data
relevant to the session. To avoid singularity, we apply regu-
larization with an identity matrix Id:

Σ̃
t
= Σt +

γ

d
tr(Σt)Id, (6)

where γ is a hyperparameter controlling the strength of
regularization, d represents the feature dimension. Here,
tr(·) denotes the trace operator of a matrix, and both d
and tr(Σt) provide a prior estimation for the regularization
strength. Subsequently, we construct a continuously evolv-
ing shared covariance matrix as:

Σ̃
t

G =
|Yt−1|
|Yt|

Σ̃
t−1

G +

(
1− |Yt−1|

|Yt|

)
Σ̃

t
. (7)

The evolved covariance matrix captures the statistical infor-
mation of all categories. Given a test sample x, we calculate
its score as:

scov
c (x) = −1

d

(
f (x)− µ̃I

c

)T
Σ̃

−1

G

(
f (x)− µ̃I

c

)
. (8)
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The division by feature dimension d serves as a normal-
ization factor, preventing the softmax transformation into
probabilities from collapsing into a single category. The
negative sign maintains metric consistency, ensuring that a
larger output score indicates a higher probability of the sam-
ple belonging to category c. Here, Σ̃G denotes the global
covariance, with the superscript t omitted for clarity.

3.3.2 Cross-modal category nearest neighbor metric

Global covariance modeling effectively utilizes statistical
information from the visual modality. To better lever-
age LLM-generated category descriptions, we propose a
category-conditioned nearest-neighbor-based metric. Given
a description text tc,j encoded by g(·), we obtain its nor-
malized feature representation zc,j =

g(tc,j)
∥g(tc,j)∥2

. For a vi-
sual query sample, we compute its normalized representa-
tion v = f(x)

∥f(x)∥2
. The likelihood of this sample belonging

to category c is determined by the maximum dot product
between v and all description features in class c:

snn
c = max

j

{
z⊤
c,j · v

}
, (9)

where snn
c indicates the likelihood that the query sample be-

longs to category c. This metric leverages maximum cross-
modal similarity, effectively utilizing the diverse textual de-
scriptions generated by LLM.

3.3.3 Inference score reorganization strategy

We employ a globally shared covariance matrix to model
distribution shape information in the visual feature space.
While the base session contains substantial data for accurate
covariance matrix estimation, experiments reveal that these
base-derived covariance matrices perform poorly in distin-
guishing new class data. This limitation stems from two
factors: (1) the covariance from extensive base data fails to
align with new classes, and (2) the limited data available for
new classes prevents accurate covariance estimation. To ad-
dress this, we use the cross-modal category nearest neighbor
metric for novel classes to compensate for the limitations of
the second-order covariance metric, as shown in Figure 3.

We first normalize the scores of three metrics using
the softmax function: pcalib = softmax

(
scalib

)
, pcov =

softmax (scov), and pnn = softmax (snn). The final prob-
ability score pc is computed differently for base and novel
categories:

pc =

{
αpcalib

c + (1− α)pcov
c , c ∈ Y0

αpcalib
c + (1− α)pnn

c , c /∈ Y0.
(10)

For base categories (c ∈ Y0), we use a weighted sum
of mixed prototype scores and visual mahalanobis metric
scores. For novel categories (c /∈ Y0), we combine mixed
prototype scores with cross-modal nearest neighbor metric
scores. The final category prediction for a sample is deter-
mined by argmaxc pc.

4. Experiments
4.1. Experimental settings

Datasets. We evaluate our method on three benchmarks
following [22, 30, 41]: CIFAR100 [3], CUB200-2011 [32],
and miniImageNet [25]. For CIFAR100 and miniImageNet,
we partition each dataset into 60 base classes and 40 novel
classes. The novel classes are further divided into eight in-
cremental tasks, with each task structured as a 5-way 5-shot
incremental session. The CUB200 dataset is split into 100
base classes and 100 novel classes, with each incremental
task organized in a 10-way 5-shot format.

Implementation details. We adopt CLIP’s ViT-B/16 ar-
chitecture as the backbone for fair comparison across all
methods. For category descriptions, we utilize fine-grained
text generated by CuPL [23] and [26]. The hyperparame-
ters are configured with intra-modal calibration coefficients
λT = 0.5 (textual), and λI = 0.1 (visual), and a temper-
ature parameter τ = 16. The inter-modal calibration coef-
ficient β is optimized through a validation process. Specif-
ically, we divide the base session into training and valida-
tion subsets. Applying our bi-level calibration framework
on the training subset, we evaluate performance on the val-
idation subset. By incrementing β by 0.05, we identify the
value that maximizes validation accuracy. This optimal β
remains fixed throughout subsequent incremental sessions.
The shared covariance parameter γ is set to 1 for the base
session and adjusted to 5 for incremental sessions. Finally,
for score reorganization, we set α = 0.6 for CIFAR100 and
miniImageNet, and α = 0.8 for CUB200.

4.2. Comparison results

We compare our method with training-free approaches in
the FSCIL scenario: CLIP Zero-Shot [24], Visual Proto-
type [29], TEEN [35] and FeCAM [8]. We present the per-
formance curve over all benchmarks in Figure 4, while de-
tailed session-wise performance on miniImageNet is shown
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Table 1. Detailed session-wise accuracy, average accuracy (Avg) and performance degradation (PD) comparison on miniImageNet dataset.
V and L represent the visual and language modalities, respectively. BiMC refers to the results obtained solely through the bi-level calibra-
tion framework, whereas BiMC† incorporates the ensemble classifier strategy. The best results on each each sessions are indicated in bold,
while the second-best results are underlined. ↑ means higher is better, while ↓ means lower is better.

Method Modality
Accuracy in each session(%) ↑

Avg ↑ PD ↓
0 1 2 3 4 5 6 7 8

CLIP Zero-Shot [24] L 91.27 91.25 89.74 89.43 88.98 88.42 86.96 86.64 86.15 88.76 5.12
Visual Prototype [29] V 92.58 91.88 89.37 88.24 88.42 87.86 86.33 86.16 86.09 88.55 6.49
TEEN [35] V 92.58 92.06 89.69 88.60 88.80 88.31 86.84 86.71 86.66 88.92 5.92
FeCAM [8] V 94.42 93.71 91.61 90.59 90.62 90.22 88.43 88.17 88.20 90.66 6.22

BiMC V-L 94.90 94.80 93.21 92.91 92.88 92.60 91.78 91.88 91.81 92.97 3.09
BiMC† V-L 95.47 95.34 93.80 93.63 93.51 93.18 92.51 92.56 92.40 93.60 3.07
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Figure 4. Performance curve of each incremental sessions on (a) miniImageNet, (b) CIFAR100 and (c) CUB200 datasets.

in Table 1. Detailed results for CIFAR100 and CUB200 are
provided in the supplementary material.

Our approach demonstrates competitive performance
across all three datasets and significantly outperforms uni-
modal baselines without requiring additional training, high-
lighting the importance of leveraging information from both
modalities. On the miniImageNet dataset, while visual and
textual1 prototype classifiers achieve comparable results,
and although TEEN [35] and FeCAM [8] better utilize vi-
sual modality information, their improvement remain lim-
ited. Our framework employs a simple calibration strat-
egy to integrate domain visual knowledge with pretrained
linguistic knowledge, yielding up to 6% performance im-
provement over uni-modal models.

For CIFAR100, the language prototype shows better re-
sistance to forgetting compared to the visual one, which is
more susceptible to sequential task learning. This can be
attributed to the dataset’s low-resolution characteristics, re-
sulting in insufficient visual information during incremental
phases. Our calibration framework achieves approximately
3.5% improvement over a language-only classifier. In con-
trast, for the fine-grained CUB200 dataset, the visual proto-
type surpasses the language prototype due to limited trans-

1“textual prototype” refers to the classifier generated by CLIP in a zero-
shot setting, which has the same meaning as “textual classifier” mentioned
later in the paper.
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Figure 5. Comparison of output confidence with different models.

ferability of pre-trained language knowledge. By combin-
ing both modalities, our approach achieves approximately
3.5% performance improvement. Notably, our framework
demonstrates robust resistance to forgetting, achieving the
lowest performance drop across all metrics.

One can observe that each modality’s contribution to
classification varies across datasets. Our proposed bi-level
calibration framework effectively leverages the strengths of
each modality and mitigates modality bias. Moreover, our
ensemble inference strategy, denoted as BiMC†, provides
additional performance improvements.

4.3. Investigation of bi-level calibrated classifiers

In this section, we analyze two distinct attributes of the cali-
brated classifier to demonstrate the effectiveness of our pro-
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Table 2. Ablation studies of bi-level calibration framework on miniImageNet. Vis. and Lang. individually represent classifiers derived from
the visual and language modalities. Intra-C and Inter-C refer to the strategies of intra-modal and inter-modal calibration, respectively.

Vis Lang Intra-C Inter-C
Accuracy in each session(%) ↑

Avg ↑ PD ↓
0 1 2 3 4 5 6 7 8

✓ 92.58 91.88 89.37 88.24 88.42 87.86 86.33 86.16 86.09 88.55 6.49
✓ ✓ 92.58 92.06 89.69 88.60 88.80 88.31 86.84 86.71 86.66 88.92 5.92

✓ 91.27 91.25 89.74 89.43 88.98 88.42 86.96 86.64 86.15 88.76 5.12
✓ ✓ 93.27 93.32 91.91 91.51 91.21 90.73 89.28 89.23 89.01 91.05 4.26

✓ ✓ ✓ 94.68 94.58 92.87 92.49 92.56 92.31 91.59 91.58 91.54 92.69 3.14
✓ ✓ ✓ ✓ 94.90 94.80 93.21 92.91 92.88 92.60 91.78 91.88 91.81 92.97 3.09

Table 3. The left side of the table lists classification result combi-
nations from three classifiers, while the right side shows the per-
centage (%) of test samples meeting each combination. Test sets
from both the base and the final session were used for analysis.

Modality CIFAR100 CUB200

V L V-L Dtest
0 Dtest

8 Dtest
0 Dtest

10

✓ ✓ ✓ 65.33 51.81 59.00 44.85
✗ ✓ ✓ 6.95 13.07 2.06 4.00
✓ ✗ ✓ 6.10 5.56 19.83 21.40
✗ ✗ ✓ 1.20 2.10 1.08 1.98

posed framework.
The bi-level calibrated classifier enhances prediction

confidence. We evaluate prediction confidence by calcu-
lating the entropy of predictions for each classifier in the
final session across all three datasets. The entropy serves
as an uncertainty indicator for model outputs, and we com-
pute it separately for both base and novel categories, as de-
tailed in Figure 5. The findings indicate that the bi-level cal-
ibrated classifier significantly reduces the entropy of predic-
tions compared to uni-model classifiers, thereby enhancing
prediction accuracy.

The bi-level calibrated classifier mitigates modality
bias. To elucidate the superior performance of our method,
we analyze the joint prediction outcomes across different
classifiers in comparison to uni-modal approaches. Using
✓ to denote correct classifications and ✗ for classification
errors, we observe that the calibrated classifier maintains
accurate predictions even in cases where uni-modal classi-
fiers fail, as demonstrated in the 2nd and 3rd rows of Table 3.
This evidence suggests that the bi-level calibrated classi-
fier produces more accurate and unbiased predictions, of-
fering enhanced robustness compared to uni-modality clas-
sifiers. Remarkably, in certain rare instances, the modality-
calibrated classifier successfully classifies samples that both
uni-modal classifiers misclassify.

4.4. Ablation study

We conduct comprehensive ablation analyses on the
miniImageNet dataset to evaluate the significance of each
component within our proposed framework.

Bi-level calibration framework. Our framework com-

Table 4. Ablation study of Semantic and Covariance-enhanced
Metric on the miniImageNet dataset. To verify their efftctiveness,
we measured the performance of the base task Abase, the perfor-
mance of last task Alast and the average performance Aavg. across
all tasks. Additionally, we report the accuracy of base Ab

last and
novel An

last class in last task.

Ablation Abase Alast Ab
last An

last Aavg.

BiMC 94.90 91.81 93.43 89.38 92.97
+ MGC 95.47 91.51 94.37 87.22 92.91
+ CMNN 94.85 92.15 93.30 90.42 93.18

BiMC† (w/o mask.) 95.47 92.20 94.12 89.32 93.37
BiMC† 95.47 92.40 93.20 91.20 93.60

prises four components: visual modality information, lin-
guistic modality information, intra-modal calibration strat-
egy, and inter-modal calibration strategy. As shown in Ta-
ble 2, single-modality classifiers enhanced with intra-modal
calibration demonstrate improved performance, attributable
to more accurate estimation of the uni-modal classifier.
When employing inter-modal calibration, we observe sig-
nificant performance gains compared to uni-modal ap-
proaches, owing to the fusion strategy’s effectiveness in ad-
dressing modality biases. The combination of both intra-
modal and inter-modal calibration strategies yields the best
performance, with comprehensive knowledge integration
leading to minimal forgetting rates.

Semantic and covariance-enhanced metric. We ex-
amine the effectiveness of Modeling Global Covariance
(MGC) and Cross-modal category Nearest Neighbor met-
ric (CMNN) in Table 4. The global covariance model-
ing strategy enhances base category performance in both
the base session and the final incremental session, though
at the cost of reduced recognition performance for novel
classes, a consequence of the mismatch between global co-
variance (dominated by base data) and new classes. The
semantic nearest neighbor strategy, conversely, improves
novel class recognition performance. Implementing both
strategies simultaneously without masking further enhances
overall performance. Finally, the ensemble inference mech-
anism with masks fully leverages the advantages of both
metrics, achieving superior performance.
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Table 5. Comparison with three trainable methods on the
miniImageNet dataset. Np is the number of parameters which
require training. ∆Alast reflects the last task’s performance gap
between our method and the comparative one.

Method Np Abase Alast Aavg. ∆Alast

CPE-CLIP [5] 400k 90.23 82.77 86.13 +9.63
CLIP-M3 [6] 46k 96.00 92.50 94.10 −0.10
LP-DiF [10] 8.1k 96.34 91.68 93.76 +0.72
BiMC† 0 95.47 92.40 93.60 0.00

Figure 6. CLIP Feature Space Visualization. Squares, circles, and
pentagrams represent textual, visual features, and calibrated clas-
sifiers respectively. Different colors denote different categories.

4.5. Further analysis

Comparison with training-required methods. To com-
prehensively evaluate our approach, we conduct compar-
isons with three training-based methods [5, 6, 10]. As
demonstrated in Table 5, our parameter-free adaptation ap-
proach to FSCIL tasks achieves comparable or superior per-
formance to methods that require additional training.

Visualization of Feature Space. We visualized the
image and text feature distributions on the miniImageNet
dataset, as depicted in Figure 6. Our analysis showed that
in the unified feature space encoded by CLIP, visual and
textual features are located at diametrically opposed ends,
exemplifying a modality gap phenomenon [16]. Textual
features showed more consistent convergence, in contrast to
the visual features of the same category, which were more
dispersed within the feature space. Notably, despite be-
ing distinct, these features share similar representations in
the visual subspace (e.g., the two purple dashed ellipses in
Figure 6) but are clearly distinguishable in the textual sub-
space. Furthermore, after modality calibration, the classi-
fiers, influenced by visual priors, demonstrate a shift from
the textual modality to the visual modality, thereby alleviat-
ing modality bias and enhancing classification capabilities.

Analysis of hyper-parameters. Our framework in-
volves two critical hyper-parameters: the inter-modal cal-
ibration parameter β and the ensemble classifier weighting
coefficient α, both constrained to [0, 1]. Figure 7a illustrates
how performance varies sessions for different values of β.
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Figure 7. Analysis on hyper-parameters β and α. For β, we
present heatmaps illustrating accuracy under varying β across dif-
ferent sessions. For α, we report the average task accuracy Aavg.

and the final task accuracy Alast under different settings.

We observe that the β values that perform well in the base
session maintain their effectiveness throughout incremental
tasks. The optimal solution identified through the validation
search in the base session (indicated by the blue rectangular
box) closely approaches the global optimum. For the pa-
rameter α, results are presented in Figures 7b and 7c. When
α = 1, the method reduces to a bi-level calibrated classifier.
The performance reaches its peak at α = 0.6, optimizing
both the average and final accuracy metrics.

5. Conclusion
We explore CLIP models in the context of Few-shot Class-
Incremental Learning. To mitigate forgetting, we treat the
pre-trained model as a black box and employ a simple yet
effective training-free bi-level modality calibration strategy.
The intra-modal calibration achieves accurate classifier es-
timates within each modality, while the inter-modal cali-
bration combines knowledge from both visual and textual
modalities. An ensemble inference strategy integrating co-
variance and nearest-neighbor metrics enhances the accu-
racy of prediction. Extensive experiments validate the ef-
fectiveness of our approach.
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