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ABSTRACT

Generalizing Neural Radiance Fields (NeRF) to new scenes is a significant chal-
lenge that existing approaches struggle to address without extensive modifications
to vanilla NeRF framework. We introduce InsertNeRF, a method for INStilling
gEneRalizabiliTy into NeRF. By utilizing multiple plug-and-play HyperNet mod-
ules, InsertNeRF dynamically tailors NeRF’s weights to specific reference scenes,
transforming multi-scale sampling-aware features into scene-specific representa-
tions. This novel design allows for more accurate and efficient representations of
complex appearances and geometries. Experiments show that this method not only
achieves superior generalization performance but also provides a flexible pathway
for integration with other NeRF-like systems, even in sparse input settings. Code
will be available at: https://github.com/bbbbby-99/InsertNeRF.

1 INTRODUCTION

Novel view synthesis, a fundamental discipline in computer vision and graphics, aspires to cre-
ate photorealistic images from reference inputs. Early works (Debevec et al., 1996; Lin & Shum,
2004) primarily focused on developing explicit representations, facing challenges due to the ab-
sence of 3D supervision. This issue has been alleviated by recent advancements in implicit neural
representation research, which have led to improved performance. In particular, Neural Radiance
Fields (NeRF) (Mildenhall et al., 2021) has attracted significant interest. NeRF, and its derivative
works, extract scene-specific implicit representations through overfitting training on posed scene
images. Although NeRF uses neural scene representations effectively to yield realistic images, the
scene-specific nature of these representations requires retraining when faced with novel scenarios.

An emerging topic known as Generalizable NeRF (GNeRF) has recently garnered considerable at-
tention for this challenge. GNeRF aims to learn a scene-independent inference approach that facili-
tates the transition from references to target view. Current methods enhance the NeRF architecture
by adding structures that aggregate reference-image features, or reference features. Examples in-
clude pixel-wise feature cost volumes (Johari et al., 2022), transformers (Wang et al., 2022; Suhail
et al., 2022), and 3D visibility predictors (Liu et al., 2022). However, fitting these additions into
conventional NeRF-like frameworks such as mip-NeRF (Barron et al., 2021), NeRF++ Zhang et al.
(2020), and others, often proves challenging and may fail to effectively harness the guiding potential
of reference features. Furthermore, the extensive use of transformers or cost volumes can be time-
consuming. Thus, an intriguing question arises: Is it possible to directly INStill gEneRalizabiliTy
into NeRF (InsertNeRF) while staying faithful to the original framework?

A straightforward way to accomplish this goal is to adaptively modify the NeRF network’s weights,
or implicit representations, for different reference scenes while preserving the original framework.
The concept of hypernetwork (Ha et al., 2016), which conditionally parameterizes a target network,
is an effective strategy in this scenario. The features extracted from the reference scene can be used
as inputs to generate scene-specific network weights. However, initial experiments in Tab. 2 indi-
cate that constructing a hypernetwork directly based on the NeRF framework can be inadequate, and
often fails to predict different attributes like emitted color and volume density. To address this, we
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Figure 1: Overview of motivation. (a) We instill generalizability into NeRF-like systems, includ-
ing vanilla NeRF, mip-NeRF, and NeRF++ frameworks, to achieve consistent performance across
scenes without modifying the base framework or requiring scene-specific retraining. (b) InsertNeRF
significantly improves depth estimation compared to its original counterpart.

propose to use HyperNet modules, which are designed to serve as easily integrable additions to exist-
ing NeRF-like frameworks. Owing to their flexibility, the resulting InsertNeRF excels at predicting
the NeRF attributes by capitalizing on sampling-aware features and various module structures.

In InsertNeRF, we insert multiple HyperNet modules to instill generalizability throughout the frame-
work’s progression. This approach allows us to fully leverage the guiding role of scene features in
determining the entire network’s weights. Unlike existing works that solely utilize reference features
as inputs, InsertNeRF exhibits a thorough grasp of reference scene knowledge. To further unlock the
full potential of the HyperNet modules, it is crucial to aggregate scene features from a set of nearby
reference images. To achieve this, we introduce a multi-layer dynamic-static aggregation strategy.
Compared to existing works, it not only harnesses the inherent completion capabilities of global
features, but it also implicitly models occlusion through dynamic-static weights, as demonstrated on
the depth renderings shown in Fig. 1b. By feeding the aggregated scene features into the HyperNet
modules, we can generate scene-related weights based on the well-understood reference scene.

In summary, we make the following specific contributions:
• We introduce InsertNeRF, a novel paradigm that inserts multiple plug-and-play HyperNet mod-

ules into the NeRF-like framework, endowing NeRF-like systems with instilled generalizability.
• We design two types of HyperNet module structures tailored to different NeRF attributes, aiming

for predicting scene-specific weights derived from sampling-aware scene features. For these
features, we further propose a multi-layer dynamic-static aggregation strategy, which models the
views-occlusion and globally completes information based on the multi-view relationships.

• We demonstrate that InsertNeRF achieves state-of-the-art performance with extensive general-
ization experiments by integrating the modules into the vanilla NeRF. Furthermore, we show the
significant potential of our modules in various NeRF-like systems, such as mip-NeRF (Barron
et al., 2021), NeRF++ (Zhang et al., 2020), as shown in Fig. 1a, and in task with sparse inputs.

2 RELATED WORKS

2.1 GENERALIZABLE NEURAL RADIANCE FIELDS

Neural Radiance Fields (NeRF) by (Mildenhall et al., 2021) and its subsequent derivatives (Barron
et al., 2022; Isaac-Medina et al., 2023; Bao et al., 2023) have gained momentum and are capable of
producing realistic images. However, a significant drawback is the need to retrain them for every
new scene, which is not efficient in real-world applications. Recent works by (Wang et al., 2021;
2022) introduce Generalizable Neural Radiance Fields that can represent multiple scenes, regardless
of whether they are in the training set. To achieve this, many studies have focused on understanding
the relationships between reference views and refining NeRF’s sampling-rendering mechanism. For
instance, NeuRay (Liu et al., 2022) and GeoNeRF (Johari et al., 2022) use pre-generated depth maps
or cost volumes as prior to alleviate occlusion issues. On the other hand, IBRNet (Wang et al., 2021)
and GNT (Wang et al., 2022) implicitly capture these relationships through MLPs or transformers.
Regarding the sampling-rendering process, most works (Xu et al., 2023; Suhail et al., 2022; Wang
et al., 2021; Zhu et al., 2023) utilize the transformer-based architectures to aggregate the sampling
point features and replace traditional volume rendering with a learnable technique. However, a
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common limitation is that most of these methods replace NeRF’s network with transformers, making
it challenging to apply to NeRF derivatives and leading to increased computational complexity. Our
research aims to address this by instilling generalizability into NeRF-like systems with scene-related
weights while preserving its original framework and efficiency.

2.2 HYPERNETWORKS

The hypernetwork (Ha et al., 2016; Chauhan et al., 2023), often abbreviated as hypernet, is invented
to generate weights for a target neural network. Unlike traditional networks that require training
from scratch, hypernets offer enhanced generalization and flexibility by adaptively parameterizing
the target network (Alaluf et al., 2022; Yang et al., 2022; Li et al., 2020). Leveraging these benefits,
hypernets have found applications in various domains including few-shot learning (Li et al., 2020),
continual learning (Von Oswald et al., 2019), computer vision (Alaluf et al., 2022), etc. In the realm
of NeRF, there have been efforts to incorporate hypernets to inform the training of the rendering
process. For instance, (Chiang et al., 2022) propose to train a hypernet using style image features for
style transfer, while (Zimny et al., 2022) employ encoded point-cloud features for volume rendering.
On a related note, (Peng et al., 2023) utilize a dynamic MLP mapping technique to create volumetric
videos and (Kania et al., 2023) use a hypernet for 3D-aware NeRF GAN. In our work, instead of
using the hypernet in NeRF framework directly, we introduce a plug-and-play HyperNet module,
with a focus on providing reference scene knowledge to enable generalization to new scenarios.

3 METHOD

3.1 BACKGROUND

Neural Radiance Fields. Neural radiance fields (NeRF) (Mildenhall et al., 2021) is a neural repre-
sentation of scenes. It employs MLPs to map a 3D location x ∈ R3 and viewing direction d ∈ S2
to an emitted color c ∈ [0, 1]

3 and a volume density σ ∈ [0,∞), which can be formalized as:

F(x,d;Θ) 7→ (c, σ) , (1)

where F is the MLPs, and Θ is the set of learnable parameters of NeRF. Note that F can be further
split into an appearance part Fapp and a geometry part Fgeo for the view-dependent attribute c and
view-invariant attribute σ, respectively (Zhang et al., 2023).

Volume Rendering. Given a ray in a NeRF, r (t) = o + td, where o is the camera center and d is
the ray’s unit direction vector, we sample K points, {r (ti) |i = 1, ...,K}, along the ray and predict
their color values ci and volume densities σi. The ray’s color is then calculated by:

Ĉ (r) =

K∑
i=1

wici, where wi = exp

− i−1∑
j=1

σjδj

 (1− exp (−σiδi)) , (2)

where δi is the distance between adjacent samples, and wi is considered to be the hitting probability
or the weight of the i-th sampling point (Liu et al., 2022).

Generalizable NeRF. Given N reference scene views with known camera poses {In,Pn}Nn=1, the
goal of GNeRF is to synthesize a target novel view IT based on these reference views, even for
scenes not observed in the training set, thereby achieving generalizability. Current works (Wang
et al., 2021; Liu et al., 2022; Wang et al., 2022) primarily focus on aggregating features along with
the ray r (t) from multiple reference views. The overall process can be outlined as:

Fsample

({
Fview

(
{Fn (Πn(r(ti)))}Nn=1

)}K

i=1

)
7→ (c, σ). (3)

Here, Πn(x) projects x onto In, and Fn(z) queries the corresponding feature vectors according
to the projected points in n-th reference. Fview and Fsample specifically denote the aggregation of
multi-view features and the accumulation of multiple sampling point features along the ray. These
aggregations are often carried out using common techniques such as MLPs and transformers.
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Figure 2: Overview of InsertNeRF. (a) Within the NeRF framework, two types of HyperNet modules
are inserted into Fgeo and Fapp. The HyperNet modules begin by (b) extracting features among
multiple (N ) reference images, and (c) using a multi-layer dynamic-static aggregation strategy to
aggregate the scene representations. Based on these scene representations and specially designed
sampling-aware filters, (d) we develop dynamic MLPs and activation functions to guide the weights
and instill generalizability into vanilla NeRF. Finally, (a)standard volume rendering is performed.

3.2 INSERTNERF

We introduce InsertNeRF, a novel paradigm that instills generalizability into the NeRF frame-
work, as illustrated in Fig. 2. While this method can be adapted to a variety of NeRF-based sys-
tems (Sec. 4.4), we focus on its application on the vanilla NeRF in this section.

Overview. InsertNeRF achieves generalizability by inserting multiple HyperNet modules into
NeRF. These modules dynamically generate scene-specific weights for NeRF that are tailored to
specific reference scene, denoted by ΩT . Based on it, by incorporating ΩT into Eq. (1) and combin-
ing Θ as well as ΩT , NeRF’s implicit representation (or weights) gains the generalizability across
multi-scenes, which is explained in Appendix D.3. Specifically, it can be described as follows:

F(x,d;Θ,ΩT ) 7→ (c, w) ,

where ΩT = HyperNet
({
Fview

(
{Fn (Πn(r(ti)))}Nn=1

)}K

i=1

)
.

(4)

Comparing Eq. (4) to Eq. (3), the key to InsertNeRF is the newly introduced architectures with dy-
namic weights ΩT , guided by the HyperNet modules based on specific reference inputs. The process
begins with reference features extraction (Sec. 3.2.1), then a multi-layer dynamic-static aggregation
strategy is employed to fuse reference features from multi-views into scene features (Sec. 3.2.2).
Subsequently, these aggregated scene features are used to adaptively generate NeRF’s sampling-
aware weights via the HyperNet modules, which consist of sampling-aware filters, dynamic MLPs
and dynamic activation functions (Sec. 3.2.3). These novel HyperNet modules are inserted before
each MLP layer in the original NeRF, serving as an enhancement to the original MLP layers.

A notable aspect of InsertNeRF is its ability to directly calculate the hitting probability wi in Eq. (2)
for volume rendering, rather than simply outputting the volume density from Fgeo. This capability
stems from the implicit modeling of the relationships between spatial points and the advantage of
using multi-scale features. By combining Fgeo with Fapp, the entire pipeline is trained end-to-
end. Our unique design not only leads to superior rendering performance in GNeRF but also offers
improved computational efficiency compared to transformer-based structures (Wang et al., 2022).

3.2.1 REFERENCE FEATURES EXTRACTION

In the exploration of reference images, generalizable methods often combine U-Net (Ronneberger
et al., 2015) and ResNet (He et al., 2016) to extract local dense feature maps. These have proven
effective in dealing with occlusion problems (Liu et al., 2022). Yet, there is a risk that an overem-
phasis on local dense features might neglect global features, which are key to occlusion completion
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and global inference (Iizuka et al., 2017). In our work, we take advantage of the spatial repre-
sentation capabilities of multi-scale features to model complex geometry and detailed appearance.
Specifically, we bring in global-local features to successively update the Hypernet module’s weights
for Fgeo and dense feature for Fapp. Here, geometry requires multi-scale information to deduce
occluded portions, while appearance concentrates on dense fine-grained details. This process begins
with multi-scale features Fl,n from U-Net for each reference input In, and can be expressed as:

Fl,n ∈ R
W

2l+1 × H

2l+1 ×Cl , l = 2, 1, 0; n = 1, · · · , N. (5)

Here, W × H defines the image resolution, and Cl is the number of channels. During feature
upsampling (as l decreases), we output each layer’s features, transitioning from global to local.

3.2.2 MULTI-LAYER DYNAMIC-STATIC AGGREGATION STRATEGY

Following the feature extraction, the next essential step is the aggregation of scene features. This
is not only foundational for scene generalizability but also significantly impacts the effectiveness of
the HyperNet modules. Most existing techniques focus primarily on preserving local geometry and
appearance consistency, often employing visibility to model occlusions. A straightforward approach
is to deduce the view-weight based on differences between reference and target views (Wang et al.,
2021). We refer to it as static weight, denoted by MST ∈ RB×K×N , where B represents the batch
size, and it assigns higher weights to closer views in a fixed manner. However, it may be unreliable as
it overlooks the correlation among the features. To remedy this, we introduce a dynamic prediction
of multi-layer weights based on multi-scale features, involving a blend of Maxpool-MLPs and Soft-
max layers, termed dynamic weights and denoted by MDY

l ∈ RB×K×N . Our approach hence adopts
a dynamic-static aggregation strategy for more nuanced multi-view scene feature aggregation.

Formally, given the corresponding features Fl ∈ RB×K×N×dl of B × K points in the space,
where dl is the latent feature dimension, we calculate the weighted means and variances as
µl = En

[
Fl ⊙MDY

l

]
∈ RB×K×dl and vl = Vn

[
Fl ⊙MDY

l

]
∈ RB×K×dl , respectively. After

concatenating Fl for each reference view with µl and vl and halvely projecting its dimension, de-
noted as F̃l ∈ RB×K×N×dl/2, it is applied to the static weight to obtain µ̃l = En

[
F̃l ⊙MST

]
∈

RB×K×dl/2 and ṽl = Vn

[
F̃l ⊙MST

]
∈ RB×K×dl/2. With Fmax

l ∈ RB×K×dl representing the
maximum features among all the reference views, and by concatenating µ̃l and ṽl, and adding it to
Fmax
l , we accomplish the feature aggregation phase Fview in Eq. (4).1

The use of global-local dynamic weights leads to a significant enhancement in edge sharpness and
the thorough completion of detail in the depth rendering images, as evidenced in Fig. 1b. Note that
unlike static weights, dynamic weights are guided by the relationships between multi-scale reference
features and are learned with auxiliary supervision (Sec. 3.3).

3.2.3 HYPERNET MODULES

We now turn our attention to the HyperNet modules, the core element of InsertNeRF, integrated
within both Fgeo and Fapp. These modules are composed of three basic components: sampling-
aware filters, dynamic MLPs (D-MLP), and dynamic activation functions.

Sampling-aware Filter. Unlike traditional hypernetworks, where reference features are gener-
ally stable, those based on pose-related epipolar geometric constraints in GNeRF are noisy. This
noise complicates their direct use for weights generation. To address this challenge, we introduce
a sampling-aware filter that seeks to implicitly find correlations between inter-samples and reduce
noise within the reference features through graph reasoning. Specifically, following the aggrega-
tion phase Fview, each aggregated point-feature is regarded as a node within a graph structure. The
relationships between these K points are then modeled using graph convolutions, formulated as:

Hl = (I −Al)FviewW
a
l , (6)

where Fview ∈ RB×K×dl denotes the aggregated K point-features after Fview, and Al and W a
l

represent the K ×K node adjacency matrix and the learnable state update function, respectively. I
here denotes the identity matrix. This specific graph structure helps filter out noise by state-updating,

1The advantages of this strategy in comparison with Wang et al. (2021) are discussed in the Appendix D.1.
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enabling the network to concentrate on key features more effectively. Additionally, for intricate tiny
structures, we adopt an approach inspired by Chen et al. (2019), where linear layers across different
dimensions are utilized instead of standard matrix multiplications within the graph convolutions.

Dynamic MLP. Using the filtered features Hl, the HyperNet module is designed to generate cor-
responding WeightHl

and BiasHl
within specific MLPs. This instills scene-awareness into vanilla

NeRF, ensuring compatibility with Finput, the output of the previous layer in the original NeRF
framework. To enhance efficiency, these MLPs are integrated within the sampling-aware filter.

Dynamic Activation Function. Activation functions plays an essential role in the NeRF frame-
work (Sitzmann et al., 2020). Traditional options, such as the ReLU function, may struggle with de-
tail rendering and hinder the performance of D-MLPs due to their static nature. To address this, we
introduce a dynamic activation function. This function adaptively activates features in accordance
with the unique characteristics of a given scene. Inspired by Perez et al. (2018), we propose the
Dynamic Feature-wise Linear Modulation (DFiLM), in which the frequencies (FreqHl

) and phase-
shifts (ShiftHl

) are dynamically determined from Hl, allowing for more responsive activation.

The entire MLP-Block, including both the D-MLP and the activation function, can be expressed as:
Foutput = ShiftHl

(FreqHl
(WeightHl

× Finput + BiasHl
)), (7)

To insert the HyperNet modules into the NeRF framework, Foutput is subsequently fed into an orig-
inal NeRF’s MLP layer for the final result. This yields superior performance, as validated through
experimental results. We remark that the parameters are not shared among the HyperNet modules.
Moreover, their compact structures ensure that the impact on rendering efficiency is negligible.

HyperNet Modules in Fgeo and Fapp. In vanilla NeRF, Fgeo and Fapp serve distinct purposes
but employ similar MLP structures, albeit with varying complexities. Fgeo focuses on geometric
properties, whereas Fapp encodes view-dependent features using a smooth BRDF prior for surface
reflectance. This smoothness can be facilitated by progressively exploiting guided scene features,
along with a reduction in both MLP parameters and activation functions for variable d (Zhang et al.,
2020). Recognizing this need, we propose a modified HyperNet module architecture specifically for
Fapp. Our design employs a progressive guidance mechanism within Fapp, incorporating multiple
parallel dynamic branches into the NeRF framework. The weights of the D-MLP in each branch are
progressively generated from the preceding branch, enabling the capture of reference features at dif-
ferent levels for complex appearance modeling. Finally, the results of all branches are summed and
used as input to the original MLP for predicting the RGB value. In accordance with our analysis, the
DFiLM is not used in Fapp, setting it apart from other elements in the architecture. [Appendix C.1]

3.3 LOSS FUNCTIONS

The InsertNeRF pipeline is trained end-to-end utilizing three carefully designed loss functions.

Photometric loss. First, we employ the photometric loss in NeRF (Mildenhall et al., 2021), i.e., the
Mean Square Error (MSE) between the rendered and true pixel colors:

LMSE =
∑
r∈R

∥∥∥Ĉ(r)− C(r)
∥∥∥2
2
, (8)

whereR is the set of rays in a batch, and C(r) is the ground-truth RGB color for ray r ∈ R.

Backbone loss. During end-to-end training, optimizing the feature extraction without addi-
tional guidance poses considerable challenges. To address this, we draw inspiration from auto-
encoding (Kingma & Welling, 2013). By adding an additional upsampling layer and a small decoder
(used exclusively for loss computation), we seek to reconstruct reference images from encoded fea-
tures. The original images serve as supervision, and we refer to this particular loss term as Lbackbone.

Dynamic weights loss. Initiating the learning of dynamic weights from scratch introduces dif-
ficulties in understanding the connections among multi-scale features. To tackle this issue, we
introduce an auxiliary supervision to encompass global-local information. Specifically, we let
C ref

n (r) ∈ RB×K×N×3 represent the ground-truth RGB values in corresponding reference images
for K points in ray r within a batch R. We compute c′i =

∑
n,l,r∈R C ref

n (r)⊙MDY
l , the weighted

sum of these RGB values by dynamic weights. Utilizing c′i, Ĉ
′ (r) is subsequently calculated ac-

cording to Eq. (2), and supervised by the true color C(r). We designate this loss term as LDY.
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Table 1: Comparisons of InsertNeRF against SOTA methods with Setting I.

Methods NeRF Synthetic LLFF DTU
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

PixelNeRF (CVPR2021) 22.65 0.808 0.202 18.66 0.588 0.463 19.40 0.463 0.447
MVSNeRF (ICCV2021) 25.15 0.853 0.159 21.18 0.691 0.301 23.83 0.723 0.286
IBRNet (CVPR2021) 26.73 0.908 0.101 25.17 0.813 0.200 25.76 0.861 0.173
ContraNeRF (CVPR2023) - - - 25.44 0.842 0.178 27.69 0.904 0.129
GeoNeRF† (CVPR2022) 28.33 0.938 0.087 25.44 0.839 0.180 - - -
WaveNeRF† (ICCV2023) 26.12 0.918 0.113 24.28 0.794 0.212 - - -
NeuRay(CVPR2022) 28.92 0.920 0.096 25.85 0.832 0.190 28.30 0.907 0.130

InsertNeRF (Ours) 30.35 0.938 0.065 26.44 0.844 0.169 29.75 0.925 0.077

Table 2: Comparisons and ablations with Setting II.

Methods NeRF Synthetic LLFF
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

GNT (ICLR2023) 27.29 0.937 0.056 25.59 0.858 0.128

Baseline (NeRF) 7.29 0.512 0.690 11.46 0.328 0.582
NeRF with HyperNetwork 25.86 0.902 0.081 24.25 0.793 0.177
InsertNeRF w/o MLDS 25.12 0.896 0.098 24.41 0.814 0.156
InsertNeRF (Ours) 27.57 0.936 0.056 25.68 0.861 0.126

Table 3: Results with sparse inputs.

Methods 3-view
PSNR↑ SSIM↑ LPIPS↓

DietNeRF (ICCV 2021) 14.94 0.370 0.496
RegNeRF (CVPR 2022) 19.08 0.587 0.336
GeCoNeRF (ICML 2023) 18.77 0.596 0.338
FreeNeRF (CVPR 2023) 19.63 0.612 0.308
InsertNeRF (w/o retrain) 19.41 0.618 0.330

We formulate our final loss function as

L = LMSE + λ1Lbackbone + λ2LDY (9)

where λ1 and λ2 are hyperparameters controlling the relative importance of these terms.

4 EXPERIMENTS

We conduct comparative experiments with state-of-the-art (SOTA) methods across different settings
on mainstream datasets. Additionally, we validate the effectiveness of the proposed paradigm in the
context of derivative NeRF-like systems generalizations and tasks involving sparse inputs.

4.1 EXPERIMENTAL PROTOCOL AND SETTINGS

Following IBRNet (Wang et al., 2021), GNeRF exploits the target-reference pairs sampling strategy
during both the training and inference phases. Here, reference views are selected from a set of
nearby views surrounding the target view. Specifically, N reference views are chosen from a pool
of P × N (P ≥ 1) neighboring views of target, ensuring that the target view is excluded from the
reference views. During the evaluation phase, we conduct evaluations using three metrics: PSNR,
SSIM, and LPIPS, on well-established datasets such as NeRF Synthetic, LLFF, and DTU. More
training and inference details are provided in the Appendix A and Algorithm in the Appendix C.2.

In our experiments, we follow two GNeRF settings of existing methods:

Setting I. Following NeuRay (Liu et al., 2022), we use three types of training datasets for training
GNeRF, including three forward-facing datasets, the synthetic Google Scanned Object dataset and
the DTU dataset. Note that we only select training scenes in the DTU dataset, excluding the four
evaluation scenes. Following their setting in the experiments, we set N = 8.

Setting II. Following GNT (Wang et al., 2022), we train GNeRF using three forward-facing datasets
and the Google Scanned Object dataset. Unlike Setting I, the DTU dataset is not used for either
training or evaluation. In addition, we set N = 10 in this setting.

4.2 COMPARATIVE EXPERIMENTS

We evaluate InsertNeRF for its generalization based on the vanilla NeRF framework, comparing its
performance with SOTA methods under two GNeRF settings. Through extensive quantitative and
qualitative experiments, we explore the advantages of our approach, even with fewer references.

Quantitative comparisons. We present quantitative comparisons with SOTA methods under Set-
ting I and Setting II, as reported in Tab. 1 and Tab. 2. For Setting I, the quantitative comparisons

†GeoNeRF (Johari et al., 2022) and WaveNeRF (Xu et al., 2023) are trained on original rectified images
and evaluated on the distinct scenes with us in the DTU dataset.
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Figure 3: (a) Qualitative comparisons of InsertNeRF against SOTA methods. (b) A t-SNE plot of
the scene-specific representations from our HyperNet modules. More analysis in the Appendix D.2
Table 4: HyperNet modules ablations.

Methods LLFF
PSNR↑ SSIM↑ LPIPS↓

w/o D-MLP 23.33 0.774 0.198
w/o Sampling Filter 24.67 0.815 0.158
w/o DFiLM 25.04 0.832 0.152

w/o original MLP 25.44 0.848 0.131
InsertNeRF (Ours) 25.68 0.861 0.126

Table 5: MLDS aggregation strategy ablations.
Static- Dynamic- Auxiliary- Multi- Single- LLFF
Weight Weight Supervision Layers Layer PSNR↑ SSIM↑ LPIPS↓

✓ ✓ 24.88 0.827 0.154
✓ ✓ ✓ 25.55 0.851 0.128

✓ ✓ ✓ 25.53 0.850 0.131

✓ ✓ ✓ ✓ 25.15 0.838 0.139
✓ ✓ ✓ ✓ 25.68 0.861 0.126

in Tab. 1 display our model’s competitive results in evaluation datasets, with significant improve-
ments in PSNR, SSIM and LPIPS in comparison to existing SOTA methods. Specifically, PSNR and
LPIPS exhibit substantial enhancements by ∼1.16dB ↑ and ∼23.6% ↓ respectively. For Setting II,
InsertNeRF consistently outperforms the SOTA method (Wang et al., 2022), as substantiated by the
results in Tab. 2. We observe that these improvements become even more pronounced with fewer
reference images, alongside higher efficiency, as demonstrated in subsequent sections.

Qualitative comparisons. Fig. 1 and Fig. 3 (a) show the qualitative performances of our method
against baseline and SOTA methods. InsertNeRF achieves improved geometric fidelity and clear
edges, attributable to the completion capability of global features and the modeling of sample spatial
relationships from graph structures. For more analysis and results, please refer to the Appendix E.5.

4.3 ABLATION STUDIES

In Tab. 2, we analyze the core components of our method. The findings underscore the vital role of
HyperNet modules in enhancing rendering performance, as further evidenced in Fig. 3 (b) that they
instill scene-specific capabilities into NeRF’s representation. Additionally, the multi-layer dynamic-
static aggregation strategy proves to be essential. By integrating both modules, our novel paradigm
instills generalizability into the NeRF framework, leading to a performance boost of approximately
two to three times compared to the baseline model, i.e., vanilla NeRF. Additionally, we explore the
underlying mechanisms driving the effectiveness of these components. More experiments, including
single-scene setting, fine-tuning and ablation studies about Fapp in the Appendix E
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Figure 4: Performance and efficiency under
different input-number N on NeRF Synthetic.

HyperNet modules. Tab. 4 demonstrates that both
the sampling-aware filters and dynamic activation
functions are vital in the HyperNet modules, with
the sampling-aware filters having a more substan-
tial impact. This could be due to the need to con-
sider relationships between sampled points in the
rendering process, which implicitly models occlu-
sions, as noted in Liu et al. (2022). Solely using dy-
namic activation functions without D-MLP leads to
a marked decline in performance, highlighting the
essential role of MLPs in neural representation. Furthermore, using only the HyperNet modules and
omitting the original NeRF’s MLP layers results in inferior performance, reducing training stability.

Multi-layer dynamic-static aggregation strategy. In Tab. 5, ablation studies reveal the signif-
icance of dynamic-static weights and multi-layer features. Using only dynamic weights appears
more effective than static weight, likely because they are adaptively generated to suit different scene
features. The auxiliary supervision for dynamic weights and multi-layer global-local features also
play essential roles in aggregating multi-view features, underlining their importance in this strategy.
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Table 6: Quantitative results of InsertNeRF and Insert-mip-NeRF on multi-scale NeRF Synthetic.

Methods PSNR↑ SSIM↑ LPIPS↓
Full Res. 1/2 Res. 1/4 Res. 1/8 Res. Full Res. 1/2 Res. 1/4 Res. 1/8 Res. Full Res. 1/2 Res. 1/4 Res. 1/8 Res.

mip-NeRF 12.94 13.03 13.18 13.33 0.700 0.636 0.563 0.469 0.424 0.460 0.470 0.530
InsertNeRF 27.60 28.58 29.45 29.85 0.926 0.943 0.960 0.972 0.066 0.054 0.045 0.036
Insert-mip-NeRF 28.15 29.17 30.22 30.62 0.935 0.951 0.966 0.977 0.056 0.045 0.037 0.029

Input number (N ) and efficiency. Since feature extraction is time-consuming, reducing the num-
ber of reference images substantially improves the training and inference efficiency of the network.
Fig. 4 illustrates the performance of InsertNeRF as the number of reference images (N ) varies
for training on NeRF Synthetic. In comparison to GNT (Wang et al., 2022), InsertNeRF consis-
tently demonstrates superior rendering performance and inference efficiency. This success can be
attributed to our novel generalization paradigm and the compact structures of the HyperNet modules.

4.4 INSERT-NERF-LIKE FRAMEWORKS

Thanks to the plug-and-play advantage of the HyperNet modules, we extend the study of generaliza-
tion to derived domains of NeRF, such as mip-NeRF (Barron et al., 2021) and NeRF++ (Zhang et al.,
2020), areas that have rarely been discussed before. More details are provided in the Appendix A.

Insert-mip-NeRF. Mip-NeRF is a multi-scale NeRF-like model used to address the inherent aliasing
of NeRF, a significant challenge for GNeRF. Unlike Huang et al. (2023), we explore how to instill
generalizability into mip-NeRF, following its original setup. We report the qualitative and quanti-
tative performance of mip-NeRF, InsertNeRF, and Insert-mip-NeRF on multi-scale NeRF Synthetic
in a cross-scene generalization setting (see Tab. 6, Fig. 1 and Fig. 5). One can observe that incorpo-
rating the HyperNet modules not only enhances generalization for mip-NeRF but also addresses the
inherent aliasing of InsertNeRF and improves the performance in the task of multi-scale rendering.

Insert-NeRF++. NeRF++, an unbounded NeRF. Fig. 1 and Fig. 13 depicts qualitative and quanti-
tative rendering results of Insert-NeRF++. It is evident that our approach has successfully instilled
generalizability into the NeRF++ framework, doubling its PSNR compared to the original.

1/2 Res.

1/4 Res.

1/8 Res.

1/2 Res.

1/4 Res.

1/8 Res.

1/2 Res.

1/4 Res.

1/8 Res.

1/2 Res.

1/4 Res.

1/8 Res.

Insert-mip-NeRFInsertNeRFGoundTruth

Figure 5: Qualitative results of Insert-mip-NeRF.
Please refer to the Appendix E.5 for more results.

Sparse Inputs. Training NeRF with sparse
inputs has become a notable focus re-
cently (Niemeyer et al., 2022; Yang et al.,
2023). Unlike our nearby reference views set-
ting (Sec. 4.1), this task often involves train-
ing from a limited number of fixed viewpoints
to represent the entire scene. Under this set-
ting, we relax constraints on selecting nearby
viewpoints and uniformly select fixed sparse
seen viewpoints to infer on arbitrary unseen
viewpoints. Unlike existing works, our method
trains on extensive auxiliary datasets, allowing
us to represent the entire evaluation scene from
sparse inputs without retraining (see Tab. 3). To ensure fairness, all scenes in evaluation are excluded
in the training phase. In conclusion, InsertNeRF offers a novel insight that employs pre-training on
auxiliary datasets to enhance representation capabilities with sparse inputs. We believe that, through
fine-tuning on the evaluation scene and incorporating existing technologies like geometry and color
regularization, our paradigm will achieve even better performance under sparse inputs.

5 CONCLUSION

We present InsertNeRF, a novel paradigm that instills generalizability into NeRF systems. Unlike
popular transformer-based structures, our HyperNet modules are efficiently incorporated into the
original NeRF-like framework, leveraging reference scene features to generate scene-specific net-
work weights. To achieve this, we design a multi-layer dynamic-static feature aggregation strategy
for extracting scene features from reference images and employ sampling-aware filters to explore re-
lationships between sample points. Experiments on well-established datasets show that InsertNeRF
and other Insert-NeRF-like frameworks can render high-quality images across different scenes with-
out retraining. This offers insights for future works on: (i) generalization tasks for additional NeRF-
like systems such as mip-NeRF 360; and (ii) sparse inputs tasks based on auxiliary datasets.
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A EXPERIMENTAL DETAILS

During the training process, the feature extraction and InsertNeRF-systems are trained with different
learning rates in an end-to-end manner, and we apply the Adam to optimize the entire network with
an exponentially decaying learning rate. In our experiments, λ1 is set as 0.1 and λ2 is set as 1.
During the cross-scene evaluation phase, we individually test the average PSNR, SSIM, and LPIPS
metrics of all testing-view renderings for each scene and report the average values across all scenes,
as shown in Tab. 1. For the sake of fair experimental comparison and efficiency with (Wang et al.,
2022), we set the rendering stride size to 2 across all experiments. Empirical evidence demonstrates
that this choice influences the evaluation of metrics, as shown in Tab. 8. Our model is implemented
using PyTorch 1.11.0 and all experiments are conducted on Nvidia RTX 3090 GPUs with CUDA
11.4.

Metrics. We calculate the Peak Signal to-Noise Ratio (PSNR) and Structural SIMilarity (SSIM)
(Wang et al., 2004) to evaluate rendering quality for target novel viewpoints. Additionally, the
Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018) is adopted as a perceptual
metric. For all our experiments, we report the average of the PSNR, SSIM and LPIPS under different
testing views in multiple scenes to verify the generalization. It is noteworthy that, similar to the
majority of GNeRF research (Liu et al., 2022; Wang et al., 2022), our focus lies on foreground-
centric metrics for both the NeRF Synthetic and DTU datasets during the evaluation process.

A.1 EVALUATION DATASETS.

NeRF Synthetic. The dataset consists of 8 synthetic objects with viewpoints uniformly sampled on
the upper hemisphere. Each scene comprises 200 test images, wherein a sampling strategy with an
interval of 8 images is employed during the evaluation phase.
Local Light Field Fusion (LLFF). The dataset consists of 8 complex real-world scenes. Each scene
includes real images, 1/8 of which are used as the evaluation dataset.
DTU Dataset. The dataset consists of 128 object-scenes, which is a classic dataset of MVS. In the
experiments, we select 4 scenes (birds, tools, bricks and snowman) for evaluation (Liu et al., 2022).

A.2 EXPERIMENTAL DETAILS FOR INSERTNERF

For all our experiments, we maintain the experimental protocols of NeuRay (Liu et al., 2022) and
GNT (Wang et al., 2022). In Setting I, we also employ depth maps (Liu et al., 2022) as priors to
assist the Hypernet modules to generate adaptive weights. Following (Liu et al., 2022), we randomly
sample 2048 rays from Target-Reference pairs, and it trains for a total of 600,000 steps. In Setting
II (Wang et al., 2022), we randomly sample 512 rays from Target-Reference pairs, and it trains for a
total of 400,000 steps without any priors. In order to enhance training and inference efficiency, we
sample K = 64 points along each ray and simplify the volume rendering process in our paradigm.

A.3 EXPERIMENTAL DETAILS FOR INSERT-MIP-NERF

Insert-mip-NeRF substitutes point-samplings with a sequence of conical-frustums and introduces
the integrated positional encoding into the InsertNeRF framework. In contrast to InsertNeRF, we
sample K = 65 positions for integrated positional encoding on conical-frustums. Throughout all
experiments, we employ the multi-scale variants of NeRF Synthetic, such as Full, 1/2, 1/4 and 1/8
Resolutions, to simulate multi-resolution scenes for training and evaluation as (Barron et al., 2021).
The remaining experimental configurations follow those of mipNeRF and our Setting II.

A.4 EXPERIMENTAL DETAILS FOR INSERT-NERF++

Insert-NeRF++ divides the InsertNeRF’s scene representations into foreground and background
components and combines both for finally rendering (Zhang et al., 2020). In Insert-NeRF++, we
avoid using inverted sphere parametrization and chose standard parameterization across foreground-
background spatial ranges, which possesses the capability to offer precise spatial positions for
projection process Πn(x). Following (Zhang et al., 2020), we employ the Tanks and Temples
dataset (Knapitsch et al., 2017), a real-world unbound dataset captured with hand-held cameras,
for training and evaluation under cross-scenes setting. During the evaluation process, we separately
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report the renderings for the foreground and background as (Zhang et al., 2020). The remaining
experimental configurations also follow those of vanilla NeRF++ and our Setting II.

B RELATED WORKS

B.1 IMAGE-BASED RENDERING

Image-based rendering (IBR) (Chan et al., 2007) is a classic technique that aims to generate novel
views within a specific scene by warping and integrating pixel information from reference-view
images. To ensure spatial consistency, most existing works simplify this challenge by resorting to
estimated explicit geometry or depth maps (Riegler & Koltun, 2020; Jain et al., 2023). In order
to obtain proxy geometry, Structure-from-Motion (SfM) (Sinha et al., 2009) and MultiView Stereo
(MVS) (Yao et al., 2018) have recently attracted the attention of researchers in the field of IBR. How-
ever, hints from explicit geometry without 3D supervision are unstable in most scenarios. Recently
light field rendering (Lin & Shum, 2004) has become one of the alternatives to explicit representa-
tions, which considers the lighting and reflection properties of the scene to ensure visually plausible
rendering. Moreover, some works (Kopf et al., 2013; Chen et al., 2021) focus on aggregating infor-
mation from multiple reference views, which exploits the relationships between references and also
implicitly solves the occlusion. As opposed to explicit geometry, these methods rely on constructing
implicit representations to enable reasoning about novel views (Liu et al., 2019). Different from the
above explicit or implicit scene-customized representations for IBR, our method can be used in a
large number of scenes simultaneously without retraining.

B.2 NEURAL SCENE REPRESENTATION

Representing the geometry and appearance of a scenes with neural networks has been considered an
alternative to 3D scene representations in recent years (Mescheder et al., 2019; Peng et al., 2020).
Existing works demonstrate the potential of Multi-Layer Perceptrons (MLPs) in implicit representa-
tions, which activate spatial features by continuous functions (Genova et al., 2020; Jiang et al., 2020).
Neural radiance fields (NeRF) (Mildenhall et al., 2021) apply such functions for coordinate-based
representations, which use high-dimensional interpolation to produce photorealistic renderings of
target views. On its basis, mip-NeRF (Barron et al., 2021) replaces rays with casting cones during
volume rendering, changing the input of NeRF from points to cone frustums, and introduces an
integrated positional encoding for multi-resolutions images. Subsequently, NeRF++ (Zhang et al.,
2020) and mip-NeRF 360 (Barron et al., 2022) further improve NeRF and mip-NeRF to adapt to
distant targets under unbounded scenes. To further enhance representation efficiency, (Chen et al.,
2022) and (Zimny et al., 2023) proposed efficient representation methods to replace a large number
of neural network parameters. Although derivative works has been a surge, similar to most IBR
works, NeRF must also be trained for each novel scene, which is time-consuming in practice.

B.3 GENERATIVE MODELS

With the development of generative models, 3D generative models have been widely discussed, en-
abling the direct construction of 3D representations such as point clouds (Zamorski et al., 2020),
surfaces (Spurek et al., 2020b), voxels (Zhou et al., 2021) and NeRF (Poole et al., 2022). A signif-
icant amount of works have leveraged techniques from image generative models and applied them
to 3D generation, including GAN (Kania et al., 2023) and diffusion model (Liu et al., 2023). In
this work, we focus on some 3D generative models with HyperNetwork. (Spurek et al., 2020a) is an
early work that builds variable size representations of point clouds with HyperNetwork. Then, Hy-
perFlow (Spurek et al., 2020b) uses a hypernetwork to model 3D objects as families of surfaces and
Points2NeRF (Zimny et al., 2022) utilizes a HyperNetwork to generate NeRF from a 3D point cloud.
Additionally, in recent years, there have been some NeRF works that focus on this technique, they
directly incorporate HyperNetwork into NeRF, as described in Section 2.2. However, in the gen-
eralizable NeRF task, such idea is suboptimal, overlooking the characteristic of different attributes,
such as volume density and color. Furthermore, they struggle to capture the relationship between the
inputs (reference images) in the target’s sampling process. Therefore, this paper proposes two types
of HyperNet module structures for Fgeo and Fapp and Sampling-aware Filter separately to mitigate
the aforementioned two issues.
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C IMPLEMENTATION DETAILS

C.1 HYPERNET MODULE ARCHITECTURE
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(a) HyperNet module in Fgeo
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Figure 6: Detailed HyperNet module of Fgeo and Fapp

Diverging from the conventional HyperNetworks (Ha et al., 2016), the direct prediction of distinct
attributes, such as emitted color and volume density, within the NeRF framework often proves sub-
optimal. Drawing an analogy to the vanilla NeRF (Mildenhall et al., 2021), where different network
depths were assigned for Fgeo and Fapp, it is essential for InsertNeRF to discuss distinct Hyper-
Net module structures for them. Fgeo plays a pivotal role in the NeRF’s geometric representations,
which necessitates accurate inference and completion of the relationship between references based
on global-local features. Based on this analysis, multi-scale features Hl are systematically intro-
duced into the Fgeo’s HyperNet modules, as shown in Fig. 6(a). After Eq. (7), Foutput is subse-
quently fed into an original NeRF’s MLP layer. Note that we also incorporate an additional ReLU
and BatchNorm after MLP to ensure training stability for HyperNet modules.

Ffinal = ReLU(BatchNorm(MLPl(Foutput))), (10)

Note that in Fgeo, as the network’s depth increases, we leverage denser features for guiding weights
prediction, i.e., global to dense. Additionally, when the number of MLP layers surpasses that of the
feature layers, H0 will be recurrently utilized in the remaining MLP layers.

Unlike Fgeo, Fapp exhibits a heightened focus on dense features (Wang et al., 2022) and the smooth
BRDF prior for surface reflectance (Zhang et al., 2020). As shown in Fig. 6(b), Fapp’s HyperNet
modules employ a parallel progressive generation paradigm and residual connection that respond to
the desired smoothness. Specifically, given dense feature H0,

F̃final = MLP

(
Z∑

z=0

(
WeightTz

× Finput
)
+ Finput

)
,

{
Tz = WeightTz−1

z ≥ 1
Tz = H0 z = 0

, (11)

where Z represents the number of parallel branches. Note that DFiLM and dynamic bias are not
utilized in Fapp for the smooth BRDF prior.

C.2 PSEUDOCODE

In contrast to the scene-customized vanilla NeRF and its derivative works, GNeRF primarily con-
centrates on cross-scene rendering tasks without any retraining. As shown in Fig. 1, our HyperNet
modules possess the capacity to instill generalizability into NeRF-like systems. Here, we delve
further into the training processes of InsertNeRF-like systems. In Algorithm 1, due to ΩTrScene

T ’s
adaptive response to the stochastic sampling of scenes by DTrScene (that represents data of training
scenes), InsertNeRF-like systems acquires inherent generalizability, where NeRF-like systems en-
compass diverse frameworks, including but not limited to mipNeRF, NeRF++, NeRF- -, and others.
In the evaluation phase, for any given PT , we sample neighboring views {In,Pn}Nn=1 fromDTeScene,
rendering for IT with the pretrained ΘNeRF-like Systems and ΘHyperNet, as shown in Algorithm 2.

C.3 GRAPH REASONING

Graph-based methods have been the focus of extensive research recently and shown to be an efficient
way of relation reasoning (Wang et al., 2018). Following the spatial properties, we conceptualize
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Algorithm 1: Training for InsertNeRF-like Systems
Data: Training Datasets DTrain
Result: ΘNeRF-like Systems, ΘHyperNet

1 while t ≤ it do
2 Sample: r(ti)←

{
{IT ,PT } , {In,Pn}Nn=1

}
← DTrScene ← DTrain

3 ΩTrScene
T ← HyperNet

({
Fview

(
{Fn (Πn(r(ti)))}Nn=1

)}K

i=1

)
4 InsertNeRF-like Systems← NeRF-like Systems

(
r(ti),Ω

TrScene
T

)
5 ΘNeRF-like Systems,ΘHyperNet ← L
6 t← t+ 1;
7 end

Algorithm 2: Testing for InsertNeRF-like Systems
Input : ΘNeRF-like Systems, ΘHyperNet, DTest, and Random PT in Testing Scenes.
Output: IT

1 Sample: r(ti)←
{{
{In,Pn}Nn=1 ← DTeScene ← DTest

}
, {PT }

}
2 ΩTeScene

T ← HyperNet
({
Fview

(
{Fn (Πn(r(ti)))}Nn=1

)}K

i=1

)
3 IT ← InsertNeRF-like Systems

(
r(ti),Ω

TeScene
T

)
all sampled points along a ray in a fully connected graph to find correlations between inter-samples
and further update node features. Specifically, as shown in Eq. (6), InsertNeRF initially predicts
a learnable adjacency matrix Al to parameterize the edge weights between nodes, which models
the relationships between sampled points. Subsequently, W a

l is employed to update node states,
mitigating the noise from epipolar geometric constrains. Furthermore, the identity matrix I is in-
troduced to guide the learning process to pay more attention to the intrinsic characteristics of node
features. An naive approach is to calculate the adjacency matrix based on the similarity between
node features or Euclidean distance, and update node states, similar to existing graph convolution
works. However, this is computationally expensive, especially for a large number of MLP blocks in
InsertNeRF. Inspired by Chen et al. (2019), Al and W a

l are replaced by two separate linear layers
operating in different dimensions, while the identity matrix is represented as a residual connection,

Hl = Linear
(

Linear (Fview)
T
)T

+ Fview. (12)

D DISCUSSION

D.1 DIFFERENT FROM IBRNET ABOUT DYNAMIC-STATIC

For inputs, we employ the global-dense features as our multi-layer inputs, compared to IBRNet’s
single-layer dense feature, it not only retains the detailed information from dense features but also
utilizes global features to predict occluded regions, as demonstrated on the depth renderings shown

Table 7: Ablation studys for Multi-layer Dynamic-Static Aggregation Strategy with IBRNet (Wang
et al., 2021)

Methods NeRF Synthetic LLFF
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

InsertNeRF w/o Max 27.44 0.930 0.061 25.52 0.854 0.131
IBR-InsertNeRF 25.71 0.909 0.085 25.00 0.836 0.140
Multi-layer IBR-InsertNeRF 26.89 0.915 0.074 25.31 0.845 0.131
InsertNeRF (OUR) 27.57 0.936 0.056 25.68 0.861 0.126
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Figure 7: The structures of multi-views feature aggregation parts in IBRNet and InsertNeRF

Table 8: Ablation studies for rendering resolutions.

Methods LLFF DTU
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

InsertNeRF(Original Res) 26.22 0.838 0.184 29.88 0.929 0.096
InsertNeRF(1/2 Res) 26.44 0.844 0.169 29.75 0.925 0.077

in Fig. 1b, where reports the rendering results of IBRNet (top) and InsertNeRF (bottom) in terms of
color-depth. It is evident that InsertNeRF produces sharper edges and achieves more accurate depth
predictions for background regions, even when occluded in the reference views.

For architecture, IBRNet generates the visual maps using features based on the MST, while our
InsertNeRF directly predicts MDY

l using multi-layer features before MST. Intuitively, our strategy
prevents excessive reliance on the MST and contributes to the adaptive inference of relationships be-
tween reference-target images. To provide additional validation, we conduct ablation experiments.
Concretely, we replace the Multi-layer Dynamic-Static with the aggregation strategy from IBRNet
and introduce identical multi-layer inputs into IBR-InsertNeRF for fairness. As shown in Tab. 7,
despite its simplicity, our approach yields significant improvements under GNeRF settings. In ad-
dition, we also observe that the Multi-layer inputs still contributes to a notable enhancement in
IBR-InsertNeRF, which is consistent with the findings in Tab. 5.

For supervision, in contrast to the direct generation of visual maps without any supervision, we
introduce auxiliary supervision to guide MDY

l in fully encoding global-dense features. As shown
in Tab. 5, the significance of our auxiliary supervision cannot be disregarded. In summary, as shown
in Fig. 7, compared to IBRNet, the Multi-layer Dynamic-Static Aggregation Strategy focuses on
predicting dynamic weights and combines them with static weight based on the multi-layer inputs
and the auxiliary supervision to aggregate multiple reference features.

D.2 SCENE REPRESENTATION ANALYSIS

Figure 8: A t-SNE plot of the scene-
specific representations in NeRF Syn-
thetic’s scenes.

The HyperNet modules instill generalizability into NeRF
by generating scene-specific weights in the original
framework. To verify this, we visualize the intermedi-
ate representations of InsertNeRF through a t-SNE plot.
As shown in Fig. 3(b), it is noteworthy that the reduced-
dimensional features exhibit scene clustering characteris-
tics in LLFF evaluation data, which may be attributed to
the dynamic MLPs and activation functions in our Hy-
perNet modules. NeRF Synthetic also exhibits a similar
trend. In Fig. 8, although the scenes still possess cluster-
ing characteristics, they appear relatively more dispersed,
which may be attributed to significant disparities between
evaluation viewpoints in the NeRF Synthetic.
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Table 10: Comparisons of HyperNet modules against SOTA methods on ShapeNet.

Methods Chairs 1-view Chairs 2-views Cars 1-view Cars 2-views
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

ENR (Dupont et al., 2020) 22.83 - - - 22.26 - - -
SRN (Sitzmann et al., 2019) 22.89 0.89 24.48 0.92 22.25 0.89 24.84 0.92
ViewFormer (ECCV 2022) 14.74 0.79 17.20 0.84 19.03 0.83 20.09 0.85
pixelNeRF (CVPR 2021) 23.72 0.91 26.20 0.94 23.17 0.90 25.66 0.94
pixelNeRF+HyperNet modules 24.51 0.92 26.71 0.94 24.18 0.91 26.05 0.95

D.3 WHY INSERTNERF DESIGNS COULD HELP
NERF GENERALIZATION

Vanilla NeRF can be considered as an implicit representation used to depict a scene through the
parameters of a neural network, i.e. Θ, as described in Eq. (1)

A natural idea is how to alter Θ for different scenes s, so that Θs possesses the ability to represent
this new scene. By sampling different s ∈ S and generating different Θs, this can be considered
as endowing vanilla NeRF representation with generalizability in multi-scenes. However, unlike
explicit 3D representations such as voxels, meshes, and point clouds, constructing an implicit repre-
sentation Θs directly for a given s is challenging.

Therefore, in this paper, we introduce the HyperNet modules, which is invented to generate weights
for a target neural network, to address this issue. Through two types of the HyperNet modules we
propose, scene-customization weights (parameters) Ωs

T in the NeRF framework are generated in
a given s. Here, we predict Ωs

T by combining the feature extraction from reference images and
the multi-Layer dynamic-static aggregation strategy. Finally, by combining Θ and new weights
Ωs

T within the NeRF framework, we obtain Θs that can adapt to different scenes s, as described
in Sec. 3.2

E ADDITIONAL RESULTS AND ANALYSIS

E.1 ADDITIONAL ABLATION STUDIES

Rendering Resolutions: During the evaluation phase, prior works employed different rendering
resolutions, which has some impact on the metric. To investigate this issue, we evaluate the render-
ing performance at different resolutions without altering the training settings. In Tab. 8, reducing
the rendering resolution not only improved rendering efficiency but also demonstrated performance
enhancements in LLFF. However, in the DTU dataset, a contrasting trend is evident, which may be
attributed to its emphasis on foreground rendering.

Table 9: Ablation studies for Fapp.

Z
DTU

PSNR↑ SSIM↑ LPIPS↓
Z = 1 (Fgeo) 29.03 0.918 0.086

Z = 2 29.75 0.925 0.077
Z = 3 29.83 0.925 0.075

Parallel Branches Z: We further analyze the influence
of the number of parallel branches Z on network render-
ing performance, as shown in Tab. 9. When Z = 1, i.e.,
Fapp is replaced by Fgeo with the same input, a signif-
icant performance drop occurs. This might be attributed
to the implicit modeling of BRDF prior by Fapp. Further-
more, with an increase in the number of branches, Fapp

endows the NeRF framework with enhanced fine-detail
generalizability.

E.2 RESULTS FOR SHAPENET

In this section, we explore the performance of the our InsertNeRF in ShapeNet under Chairs and
Cars scenes. Due to the primary emphasis of InsertNeRF on multi-view settings I and II, the vali-
dation for multi-layer dynamic-static aggregation strategy under few-views settings is unnecessary.
Therefore, we integrate the HyperNet modules into the original pixelNeRF Yu et al. (2021), altering
its training inputs accordingly. As shown in the Tab. 10, our modules exhibit significant improve-
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Table 11: The performance in different scenes and the results after Fine-Tuning in NeRF Synthetic.

(a) PSNR

Method FT Lego Chair Drums Ficus Hotdog Materials Mic Ship Avg.

InsertNeRF 30.00 31.97 25.59 26.08 35.04 28.91 35.13 30.08 30.35
MVSNeRF ✓ - - - - - - - - 27.21
IBRNet ✓ - - - - - - - - 30.05
GNT ✓ 31.38 33.70 26.98 29.55 36.95 29.11 33.35 30.54 31.45
NeuRay ✓ - - - - - - - - 32.35
InsertNeRF ✓ 31.93 34.41 27.76 29.08 37.25 31.46 36.43 31.98 32.54

(b) SSIM

Method FT Lego Chair Drums Ficus Hotdog Materials Mic Ship Avg.

InsertNeRF 0.939 0.969 0.910 0.915 0.969 0.922 0.972 0.888 0.936
MVSNeRF ✓ - - - - - - - - 0.888
IBRNet ✓ - - - - - - - - 0.935
NeuRay ✓ - - - - - - - - 0.960
InsertNeRF ✓ 0.962 0.981 0.937 0.959 0.988 0.957 0.978 0.931 0.962

(c) LPIPS

Method FT Lego Chair Drums Ficus Hotdog Materials Mic Ship Avg.

InsertNeRF 0.056 0.033 0.079 0.085 0.037 0.076 0.029 0.129 0.066
MVSNeRF ✓ - - - - - - - - 0.162
IBRNet ✓ - - - - - - - - 0.066
NeuRay ✓ - - - - - - - - 0.048
InsertNeRF ✓ 0.044 0.024 0.065 0.054 0.027 0.048 0.021 0.102 0.048

ments compared to pixelNeRF Yu et al. (2021), especially in the 1-view setting. It’s also evident that
compared to NeRF Synthetic, LLFF, and DTU, InsertNeRF shows less improvement on ShapeNet.
This might be due to the relatively simplistic appearance and geometry of ShapeNet-Scenes, and our
work primarily focuses on multi-view settings as mentioned in (Kulhánek et al., 2022).

E.3 RESULTS FROM FINE-TUNING

We also explore the rendering performance of InsertNeRF after fine-tuning in various scenes. In
contrast to the fine-tuning methodology adopted by (Liu et al., 2022), we fine-tune directly on the
pre-trained model. Tab. 11 presents the performance of InsertNeRF across different scenes and the
results after fine-tuning in NeRF Synthetic.

E.4 SINGLE SCENE RESULTS

Existing works (Wang et al., 2022) also tend to focus on single-scene rendering within the framework
of GNeRF. We conduct a quantitative comparison with existing works in the single-scene setting and
achieve satisfactory performance, as shown in Tab. 12.

E.5 MORE QUALITATIVE RESULTS

We present additional qualitative results to further analyze the superiority of InsertNeRF. i). Fig. 9
and Fig. 10 report qualitative results in LLFF and NeRF Synthetic. ii). Fig. 11 showcase more
Color-Depth results in LLFF and DTU datasets. iii). We also qualitatively analyze the generaliz-
ability of the InsertNeRF-systems including Insert-mip-NeRF Fig. 12, and Insert-NeRF++ Fig. 13.
Note that the presence of color distortion in the Insert-NeRF++’s foreground rendering is observed,
yet it does not impact the combined results, possibly attributable to the replaced sampling process.
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Table 12: Comparison of InsertNeRF for single scene rendering on the NeRF Synthetic.

(a) PSNR

Method Room Fern Leaves Fortress Orchids Flower T-Rex Horns

LLFF 24.54 28.72 21.13 21.79 18.52 20.72 27.48 23.22
NeRF 32.70 25.17 20.92 31.16 20.36 27.40 26.80 27.45
GNT 32.96 24.31 22.57 32.28 20.67 27.32 28.15 29.62
InsertNeRF 32.55 24.88 22.59 31.82 21.18 28.39 27.49 29.37

(b) SSIM

Method Room Fern Leaves Fortress Orchids Flower T-Rex Horns

LLFF 0.932 0.753 0.697 0.872 0.588 0.844 0.857 0.840
NeRF 0.948 0.792 0.690 0.881 0.641 0.827 0.880 0.828
GNT 0.963 0.846 0.852 0.934 0.752 0.893 0.936 0.935
InsertNeRF 0.961 0.846 0.853 0.925 0.756 0.904 0.928 0.932

(c) SSIM

Method Room Fern Leaves Fortress Orchids Flower T-Rex Horns

LLFF 0.155 0.247 0.216 0.173 0.313 0.174 0.222 0.193
NeRF 0.178 0.280 0.316 0.171 0.321 0.219 0.249 0.268
GNT 0.060 0.116 0.109 0.061 0.153 0.092 0.080 0.076
InsertNeRF 0.063 0.121 0.109 0.062 0.152 0.070 0.085 0.074

F LIMITATIONS

In the majority of scenarios, a higher number of sample points along the rays often leads to improved
rendering performance. In essence, thanks to the transformer architecture, existing works (Wang
et al., 2022; 2021) can be trained on a limited number of sample points (64 training samples) and
evaluated on the more sample points (192 evaluation samples), resulting in elevated training effi-
ciency and improved rendering performance. However, in the InsertNeRF-system, it is essential to
maintain consistency in the number of sample points between the training and evaluation processes.
In order to ensure fairness in comparative experiments and strike the trade-off between training ef-
ficiency and rendering performance, we set K = 64 both during training and evaluation, which
imposes certain limitations on the rendering performance. Naturally, as we increase the number of
sample points for training, the rendering performance will further improve.

G FUTURE WORK

We aspire to construct an all-encompassing InsertNeRF framework, endowing generalizability into
various NeRF-derived works, such as TensoRF, NeRF–, NeuS, and so forth. This can facilitate
existing or future NeRF research to transcend the constraints of scene-customization.

In addition, we have provided a pre-trained model to address NeRF under sparse inputs in Sec. 4.4.
While such models have demonstrated satisfactory performance without any retraining Tab. 3, we
still plan to design a fine-tuning approach for sparse inputs to further enhance rendering quality.
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Figure 9: Qualitative comparisons of InsertNeRF against SOTA methods under LLFF scenes.
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GoundTruth NeuRay GNT InsertNeRFIBRNet

Figure 10: Qualitative comparisons of InsertNeRF against SOTA methods under NeRF Synthetic
scenes.

InsertNeRFIBRNet NeuRay InsertNeRF

Figure 11: Color-Depth results of InsertNeRF with existing works under LLFF and DTU’s scenes.
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Figure 12: Qualitative results of Insert-mip-NeRF in multi-scale NeRF Synthetic.
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Figure 13: Qualitative results of Insert-NeRF++ in Tanks and Temples.
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