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Abstract

When training deep neural networks for classifi-
cation tasks, an intriguing empirical phenomenon
has been widely observed in the last-layer clas-
sifiers and features, where (i) the class means
and the last-layer classifiers all collapse to the
vertices of a Simplex Equiangular Tight Frame
(ETF) up to scaling, and (ii) cross-example within-
class variability of last-layer activations collapses
to zero. This phenomenon is called Neural Col-
lapse (NC), which seems to take place regard-
less of the choice of loss functions. In this
work, we justify NC under the mean squared
error (MSE) loss, where recent empirical evi-
dence shows that it performs comparably or even
better than the de-facto cross-entropy loss. Un-
der a simplified unconstrained feature model, we
provide the first global landscape analysis for
vanilla nonconvex MSE loss and show that the
(only!) global minimizers are neural collapse so-
lutions, while all other critical points are strict
saddles whose Hessian exhibit negative curva-
ture directions. Furthermore, we justify the usage
of rescaled MSE loss by probing the optimiza-
tion landscape around the NC solutions, show-
ing that the landscape can be improved by tun-
ing the rescaling hyperparameters. Finally, our
theoretical findings are experimentally verified
on practical network architectures. The source
code is available at https://github.com/
jinxinzhou/neural-collapse-MSE.
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1. Introduction
Despite the dramatic success of modern deep neural net-
works (DNNs) across engineering and sciences (Goodfellow
et al., 2016; Krizhevsky et al., 2012; LeCun et al., 2015; Se-
nior et al., 2020) that we have witnessed in the past decade,
the practice of deep learning has yet been shrouded with
mysteries, ranging from the design of appropriate network
architectures (Martens et al., 2021; Qi et al., 2020) to the
generalization and robustness properties (Madry et al., 2018;
Nakkiran et al., 2019; Yang et al., 2020) of the learned net-
works. For instance, even the right choice of training loss
function has not been thoroughly justified. For classifica-
tion problems, although the cross entropy (CE) loss is the
standard choice for network training, recent work (Hui &
Belkin, 2021) demonstrated with extensive experiments that
DNNs trained with mean-squared error (MSE) loss achieve
on par or even better performance compared to those of the
CE loss.

Towards demystifying DNN, a recent interesting line of
work (Ergen & Pilanci, 2021; Fang et al., 2021; Graf et al.,
2021a; Han et al., 2022; Mixon et al., 2020; Papyan, 2020;
Papyan et al., 2020; Zhu et al., 2021) studied and charac-
terized the learned deep representations during the terminal
phase of training, where several intriguing phenomena have
been discovered. In particular, recent seminal work of (Han
et al., 2022; Papyan et al., 2020) empirically demonstrated
that last-layer features and classifiers of a trained DNN
exhibit the following Neural collapse (NC) property:

(NC1) Variability collapse: the individual features of each
class concentrate to their class-means.

(NC2) Convergence to simplex ETF: the class-means have
the same length and are maximally distant; they form
a Simplex Equiangular Tight Frame (ETF).

(NC3) Convergence to self-duality: the last-layer linear clas-
sifiers perfectly match their class-means.

(NC4) Simple decision rule: the last-layer classifier is equiv-
alent to a Nearest Class-Center decision rule.

It has been empirically demonstrated that the NC persists
across the range of canonical classification problems with
the CE loss. These results imply that deep networks are

https://github.com/jinxinzhou/neural-collapse-MSE
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essentially learning maximally separable features between
classes, and a max-margin classifier in the last layer upon
these learned features, touching the ceiling in terms of the
training performance. Later work theoretically investigated
the NC based on a simplified assumption of the so-called
unconstrained feature model (Mixon et al., 2020) or layer-
peeled model (Fang et al., 2021), where the features are
viewed as free optimization variables. The underlying rea-
soning is that modern deep networks are often highly over-
parameterized with the capacity of learning any representa-
tions (Cybenko, 1989; Hornik, 1991; Lu et al., 2017; Sha-
ham et al., 2018), so that the last-layer features can approxi-
mate, or interpolate, any point in the feature space. Under
the unconstrained feature model, the work (Fang et al., 2021;
Graf et al., 2021a; Ji et al., 2021; Lu & Steinerberger, 2020;
Mixon et al., 2020; Tirer & Bruna, 2022; Weinan & Woj-
towytsch, 2020) showed that the NC solutions are the only
global optimal solution for nonconvex training losses under
different settings. However, given the nonconvexity of the
problem, even under the unconstrained feature model these
global optimality results do guarantee that the NC solutions
can be efficiently achieved. This has been further resolved
by the recent work (Zhu et al., 2021), showing that the CE
loss function enjoys a benign global optimization landscape
under the unconstrained feature model. It shows that every
saddle point is a strict saddle with negative curvature, so that
the CE loss can be efficiently optimized to the NC solution
regardless of the nonconvexity.

It should be noted that the NC phenomenon is not solely
pertinent to the particular choice of the CE loss. It has been
recently reported (Han et al., 2022), that DNNs trained with
the MSE loss also exhibit very similar NC phenomena but
with even faster collapse in terms of training epochs and
with better (adversarial) robustness. In the meanwhile, the
MSE loss is not only appealing for its algebraic simplicity,
but it also demonstrates on-par or even better generaliza-
tion performances compared to the CE loss, as reported by
recent line of work (Hui & Belkin, 2021). However, the
theoretical study of MSE loss for NC is still limited (Han
et al., 2022; Mixon et al., 2020; Tirer & Bruna, 2022). Un-
der the unconstrained feature model, their work proved that
the continuous gradient flow of the MSE loss converges to
NC solutions. In particular, the work (Mixon et al., 2020)
relies on linearizations of the ordinary differential equation
by assuming very small initializations, which is not well
aligned with the practice of deep learning where the weights
are usually initialized with non-negligible magnitudes such
as by the Kaiming initialization (He et al., 2015). Because
the choice of the loss function without balanced weight de-
cay, the analysis in (Han et al., 2022) only focuses on the
renormalized features and studies the continually renormal-
ized gradient flow.1 Moreover, in practice deep networks are

1The model used in (Han et al., 2022) imposes a weight decay

usually trained using iterative algorithms such as stochastic
gradient descent (SGD) with nontrivial stepsizes, rather than
using the continuous gradient flows. The work (Graf et al.,
2021b; Poggio & Liao, 2020a;b; Rangamani et al., 2021)
study deep homogeneous classification networks (without
bias terms but beyond the unconstrained features model)
trained with MSE loss, stochastic gradient descent, and
weight decay. In particular, the solutions satisfying the so-
called symmetric quasi-interpolation assumption are proved
to obey NC properties, but the properties of other solutions
are not investigated (Graf et al., 2021b; Rangamani et al.,
2021).

As far as we know, the work closest to ours is the concurrent
work (Tirer & Bruna, 2022). Under similar unconstrained
feature models, the work studies the global optimality con-
dition of NC for the MSE loss for both two-layer and three
layer networks, but not the global optimization landscape.
Additionally, it studies special cases of the MSE loss with
either no bias term, or no weight decay on the bias term.
In comparison, our work not only study the MSE loss un-
der more general setting with bias term included, but also
shows the strict saddle property of the benign nonconvex
landscape.

Contributions. In this work, we provide a thorough analy-
sis of nerual network by examining its last-layer features. In
particular, we work under the unconstrained feature model
to characterize the global optimization landscape of over-
parameterized neural networks trained with the MSE loss.
Our contributions can be highlighted as follows.

• Characterization of global solutions. We provide a
mathematical characterization of all the global solutions
for the last layer features and classifier, showing that they
satisfy the NC properties with certain choices of regular-
ization parameters. This is in contrast to previous work
(Han et al., 2022; Mixon et al., 2020) which only char-
acterize the solutions that are produced by a particular
optimization algorithm (i.e., gradient flow). Moreover,
these work only consider cases that the feature dimension
is larger than the number of classes, while our analysis
covers all choices of feature dimension.

• Benign global landscape. We prove that the loss function
is a strict saddle function (Ge et al., 2015; Sun et al., 2015;
Zhang et al., 2020), where every critical point is either
a global solution or a strict saddle point with negative
curvature. This implies that there is no spurious local min-
imizer on the optimization landscape. Hence, our work is
distinguished from previous work (Ergen & Pilanci, 2021;
Fang et al., 2021; Graf et al., 2021a; Lu & Steinerberger,

on the classifier, but not on the features. Thus, without renormal-
ization, the weights of the classifier will converge to zero while
the features will blow up.



On the Optimization Landscape of Neural Collapse under MSE Loss

2020; Mixon et al., 2020; Tirer & Bruna, 2022; Weinan
& Wojtowytsch, 2020) that only characterizes global min-
imizers. The benign global landscape implies that any
method that can escape strict saddle points (e.g. stochas-
tic gradient descent) converges to a global solution that
exhibits NC (see Section 4).

• Understanding the rescaled MSE. In practice, rescaling
the MSE loss (see Section 2.2) is empirically demon-
strated to be critical for obtaining competitive perfor-
mance compared to the CE loss particularly when the
number of classes is large (Demirkaya et al., 2020; Hui &
Belkin, 2021). We show empirically that the NC exhibits
for rescaled MSE as well. To understand the benefit of
the rescaling, we provide a visualization of the optimiza-
tion landscape w.r.t. unconstrained features, showing that
rescaling aligns the gradient direction to be perpendicular
to the decision boundary between classes hence may fa-
cilitate the convergence of gradient based algorithms to
more discriminative features.

Compared to the recent global landscape analysis for the CE
loss (Zhu et al., 2021), our result implies that both losses
learn similar NC features and classifiers when d ≥ K.
Hence, from the NC perspective, this work provides a the-
oretical explanation for the observations in (Hui & Belkin,
2021) that the DNN trained by the MSE loss achieves on
par performance compared to that trained with the CE loss.
Additionally, it should be noted that there are several major
differences between our result and (Zhu et al., 2021). First,
the work of (Zhu et al., 2021) only studied the setting where
the feature dimension d is larger than the number of classes
K, while we characterized the global optimality for both
the cases of d < K and d ≥ K. We observe dramatically
different performance for DNN learned by CE and MSE
when d < K. Second, for the MSE loss, we showed that
the bias term plays an important role2 for the solution to
be NC, while for CE loss the NC solution can be achieved
without bias terms.

2. The Problem Setup
The goal of deep learning is to learn a multi-layer nonlinear
mapping ψ(·) : Rm 7→ RK , that is able to fit the training
data and generalize. More precisely, a deep neural network
classifier can be generally written as

ψΘ(x) = Wϕθ(x) + b, (1)

where ϕθ(·) : Rm 7→ Rd is the feature mapping, on top
of which is the linear classifier (W , b). ϕθ(x) is usually
referred to as the representation or feature of the input x
learned from the network. For convenience, we use θ to

2For the MSE loss, when there is no bias term, the features
(and classifier) that minimize the loss function form orthonormal
matrices instead of Simplex ETFs when d ≥ K.

denote the network parameters in the feature mapping, and
Θ = {θ,W , b} to denote all the network parameters. In
this way, the function implemented by a neural network
classifier can also be expressed as a linear classifier acting
upon ϕθ(x).

In this work, we focus on learning deep networks for multi-
class classification tasks (say, with K classes), where the
class label of a sample xk,i in the k-th class is given by
a one-hot vector yk ∈ RK with only the kth entry equal
to unity (1 ≤ k ≤ K). Throughout the paper, we study
the setting where the number of training samples in each
class is balanced, i.e., each class has n training samples. Let
N = Kn. During the training phase, the task is then to
learn the parameters Θ so that the output of the model on an
input sample xk,i approximates the corresponding output
y (i.e. ψΘ(xk,i) ≈ yk). To quantify this approximation, it
can be done by optimizing a simple MSE loss as follows

min
Θ

1

2N

K∑
k=1

n∑
i=1

∥ψΘ(xk,i)− yk∥22 +
λ

2
∥Θ∥2F , (2)

where λ > 0 is the regularization parameter (a.k.a., the
weight decay parameter).

2.1. Basic Problem Formulation Based on
Unconstrained Feature Models

Analyzing deep networks is a tremendously difficult task
mainly due to the nonlinear interactions between a large
number of layers. Nonetheless, as argued by a line of re-
cent work (Cybenko, 1989; Hornik, 1991; Lu et al., 2017;
Shaham et al., 2018) that modern deep networks are often
highly overparameterized to approximate any continuous
function, it motivates us to simplify the analysis by treat-
ing the last-layer features as free optimization variables
hk,i = ϕθ(xk,i) ∈ Rd. Such a simplification is called
unconstrained feature model (Mixon et al., 2020) (or layer-
peeled model in (Fang et al., 2021)), which simplifies the
study of the last-layer representations of the network. To
simplify the notation, let us denote

W :=
[
w1 w2 · · · wK

]⊤ ∈ RK×d,

H :=
[
H1 H2 · · · HK

]
∈ Rd×N , and

Y :=
[
Y1 Y2 · · · YK

]
∈ RK×N ,

where wk is a row vector of W , Hk :=[
hk,1 · · · hk,n

]
∈ Rd×n contains all the k-th

class features, and Yk :=
[
yk · · · yk

]
∈ RK×n for

all k = 1, 2, · · · ,K. Based on the unconstrained feature
model, we consider a slight variant of (2), given by

min
W ,H,b

f(W ,H, b) :=
{ 1

2N

∥∥WH + b1⊤
N − Y

∥∥2
F

+
λW
2

∥W ∥2F +
λH
2

∥H∥2F +
λb
2

∥b∥22
}
, (3)
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where λW , λH , λb > 0 are the penalties for W , H , and
b, respectively.

Here, because we treat the last-layer feature H as a free
optimization variable, we put the weight decay on W and
H , which is different from the practice that the weight decay
is enforced on all the network parameters Θ as shown in
(2). Nonetheless, as discussed in (Zhu et al., 2021), this
idealization is reasonable since the energy of the features
(i.e., ∥H∥F ) can indeed be upper bounded by the energy of
the weights at every layer if the inputs are bounded (which
holds in practice), implying that the norm of H is implicitly
penalized by penalizing the norm of Θ. Additionally, for the
CE loss, the experiments in (Zhu et al., 2021) show on-par
performance for the two types of weight decay. Thus, we
expect similar performances for the MSE loss.

On the other hand, the experiments in (Graf et al., 2021a;
Zhu et al., 2021) conducted on random labels imply that the
strong assumption of unconstrained feature model is reason-
able for explaining NC during the training phase: when the
network (1) is highly overparameterized, the learned net-
work in practice will fit to the random labels and neural col-
lapse, regardless of the input. Moreover, as we shall see in
the following sections, both theory and experiments demon-
strate that such simplification preserves the core properties
of last-layer classifiers and features—the NC phenomenon.

2.2. Rescaled MSE Loss under Unconstrained Features

On the other hand, it should be noted that, when training
with the vanilla formulation of the MSE loss (2), empirically
good performances are reported only when the number of
classes is small (e.g., CIFAR10 (Krizhevsky et al., 2009)
withK < 100). When training for a large number of classes
such as ImageNet (Deng et al., 2009), to achieve better
performance rescaling is often needed (Demirkaya et al.,
2020; Hui & Belkin, 2021). Intuitively, the basic idea is to
rescale the MSE loss (3) by a pair of positive scalars (α,M),

min
W ,H,b

1

2N

∥∥∥Ω⊙1/2
α ⊙

(
WH + b1⊤ −MY

)∥∥∥2
F

+
λW
2

∥W ∥2F +
λH
2

∥H∥2F +
λb
2

∥b∥22 ,
(4)

so that we can put more emphasize on training the cor-
rect class. Here, ⊙ denotes the entry-wise Hadamard prod-
uct, Ω⊙1/2 means taking square root for each element, and
Ωα =

[
ω11

⊤
n · · · ωK1⊤

n

]
, where ωk ∈ RK with en-

tries ωki =

{
α, i = k,

1, otherwise.
In comparison to (Han et al.,

2022; Mixon et al., 2020; Tirer & Bruna, 2022), our work
not only studies NC under the vanilla setting (3) but also
investigates the more practical rescaled version of the MSE
loss (4). In particular, in Section 3.3, we provide geometric
intuitions on why rescaling would be a better choice for loss

design. We will corroborate our reasoning via experiments
on practical network training in Section 4.

3. Main Theoretical Results
In this section, we present our study on global optimality
conditions as well as geometric properties of the nonconvex
(rescaled) MSE loss under the unconstrained feature model.

3.1. Global Optimality Conditions

First, we study the nonconvex MSE loss (3) by charac-
terizing its global solutions under different settings of the
feature and class dimensions. We show that the only
global solutions of (3) are neural collapsing, satisfying the
NC properties introduced at the beginning of Section 1.

Theorem 3.1 (Global Optimality Conditions). Let
(W ⋆,H⋆, b⋆) be a global minimizer of the vanilla MSE

loss in (3). Let H
⋆
=
[
h
⋆

1 · · ·h⋆

K

]
, with h

⋆

k being the

mean of the k-th class features. Then, (W ⋆,H⋆, b⋆) satis-
fies the following properties:

• If λWλH < 1
NK , then (W ⋆,H⋆) satisfies NC1 and

NC3 as

h⋆
k,i = h

⋆

k,

√
λW
λHn

w⋆k = h
⋆

k, ∀ k ∈ [K], i ∈ [n].

Otherwise, if λWλH ≥ 1
NK , then W ⋆ = 0,H⋆ = 0.

• If λWλH < 1
NK , then H

⋆
further obeys the following

properties (NC2) for different d:

1. If d < K − 1: we have H
⋆⊤

H
⋆

= C1Pd(I −
1
K1K1⊤

K), where Pd(M) denotes the best rank-d ap-
proximating of M ;

2. If d = K−1: we have H
⋆⊤

H
⋆
= C2(I− 1

K1K1⊤
K);

3. If d ≥ K: we have H
⋆⊤

H
⋆
={

C3

(
I − 1

K1K1⊤
K

)
, if λb ≤

√
KNλW λH

1−
√
KNλW λH

C4

(
I −

√
nλW λH

λb(1−
√
KNλW λH)

1K1⊤
K

)
, otherwise

(5)
where

√
nλW λH

λb(1−
√
KNλW λH)

≤ 1
K in the second case

since λb ≥
√
KNλW λH

1−
√
KNλW λH

.

Here, C1, C2, C3, and C4 are some positive numerical
constants that depend on λW , λH , λb.

• The bias satisfies b⋆ = b⋆1K with b⋆ ≤ 1
K given by:

1. If d < K: we have b⋆ = 1
K(λb+1) ;

2. Otherwise, b⋆ =

{
1

K(λb+1) , λb ≤
√
KNλW λH

1−
√
KNλW λH

,
√
nλW λH

λb
, otherwise.

In particular, when λb → 0, we have b⋆ → 1
K ; when

λb → ∞, we have b⋆ → 0.
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We postpone the detailed proof to Appendix B. In the follow-
ing, we discuss the implications of Theorem 3.1 in detail.

• Implications on the choice of the feature dimension d.
As we observe from Theorem 3.1, for the MSE loss (3),
any global solution always exhibits variability collapse
(NC1) and self-duality (NC3). However, the convergence
of class means to simplex ETF (NC2) critically depends
on the feature dimension d. When d ≥ K − 1, for proper
choices of λW , λH , and λb, the global configuration of
the class mean H

⋆
is always a simplex ETF. In particular,

when d = K − 1, the simplex ETF configuration even
does not depend on λb. On the other hand, if d < K − 1,
our theory implies that the global solution for H

⋆
is only

the best rank-d approximation of the simplex ETF, where
the class-means of the each class are neither having equal
length nor being maximally pairwise-distanced. This re-
sult is consistent with the fact that K vectors in Rd cannot
form a K-Simplex ETF if K > d − 1, and supports
the practice of learning overparameterized network for
choosing d ≥ K.3

• Comparison to the CE loss. For the CE loss under the
unconstrained feature model, when d ≥ K recent work
(Zhu et al., 2021) showed that any global solution satisfies
all three NC properties regardless of choices of the weight
decay parameters (i.e., λW , λH , and λb). Moreover, the
bias term there becomes zero. In contrast, Theorem 3.1
shows that the solution with the MSE loss is dependent
upon choice of regularization parameters λW , λH , λb
and that the class mean H

⋆
may not be a simplex ETF.

Moreover, the bias term is essential to achieve simplex
ETF solutions for MSE loss. Without the bias term (i.e.,
λb → ∞), (5) implies that the class mean H

⋆
becomes

an orthonormal matrix even when d ≥ K. Thus, the
analysis of global optimality conditions for the MSE loss
is more complicated than for the CE loss4.

• Comparison to previous work (Han et al., 2022; Mixon
et al., 2020). As discussed in Section 1, the previous work
(Han et al., 2022; Mixon et al., 2020) only characterize
the solutions to (3) that are produced by a particular opti-
mization algorithm (i.e., gradient flow) and under specific
cases such as λb → 0 and the feature dimension is larger
than the number of classes. In contrast, we characterize

3For example, the dimension of the features of a ResNet (He
et al., 2016) is typically set to d = 512 for CIFAR10 (Krizhevsky
et al., 2009), a dataset with K = 10 classes. This dimension
grows to d = 2048 for ImageNet (Deng et al., 2009), a dataset
with K = 1000 classes.

4The proof of Theorem 3.1 is also dramatically different to
the one for CE loss in Zhu et al. (2021): the latter mainly shows
that NC solutions have small objective value than others since
NC solutions are the only global minimizers, while the proof of
Theorem 3.1 directly analyzes the global minimizers for different
scenarios.

the global optimality conditions for the MSE loss (3) and
our analysis covers all choices of feature dimension and
weight decay parameters.

• Extension to the rescaled MSE. Although our current
analysis is only for the vanilla MSE loss (3), we expect
that similar global optimality results should also hold for
the rescaled version (4). This has been corroborated by
our experimental results in Section 4. Notice that if we
fix α = 1 in (4), the analysis only with large M is simple
and remain the same as Theorem 3.1. However, dealing
with both α and M requires extra technicalities, that we
leave for future work.

3.2. Characterizations of The Benign Global Landscape
Theorem 3.1 implies that the (only!) global minimizers to
(3) are those satisfying NC properties. However, the MSE
loss function is nonconvex, hence it is not obvious whether
the benign global solutions can be efficiently achieved even
under the unconstrained feature model. To deal with this
challenge, in the following we further investigate the global
optimization landscape of (3). By leveraging recent ad-
vances on nonconvex optimization (Ge et al., 2015; Qu
et al., 2020a;b; Sun et al., 2015; 2016; 2018; Zhang et al.,
2020), we first show that our nonconvex MSE loss (3) with-
out bias term is a strict saddle function that every non-global
critical point is a saddle point with negative curvature (i.e.,
its Hessian has at least one negative eigenvalue).

Theorem 3.2. (Benign landscape for MSE without bias
term) The following MSE loss without bias term

1

2N
∥WH − Y ∥2F +

λW
2

∥W ∥2F +
λH
2

∥H∥2F
is a strict saddle function with no spurious local minimum.
That is, any of its critical point is either a global minimizer,
or it is a strict saddle point whose Hessian has a strictly
negative eigenvalue.

We postpone the proof to Appendix B (see Lemma B.1). By
viewing W and H as two factors of a matrix Z = WH ,
the formulation in (3) is closely related to nonconvex low-
rank matrix problems (Bhojanapalli et al., 2016; Chi et al.,
2019; Ge et al., 2016; 2017; Haeffele & Vidal, 2015; Li et al.,
2019a;b) with the Burer-Moneirto factorization approach
(Burer & Monteiro, 2003). In particular, the work (Ciliberto
et al., 2017; Li et al., 2019a) studied a similar problem
with λW = λH , but only for particular choices of d: d
is either required to be exactly the rank of the solution
of the corresponding convex problem (Li et al., 2019a),
or relatively large in (Ciliberto et al., 2017). In contrast,
our Theorem 3.2 characterizes the benign landscape for all
choices of feature dimension.

The following result establishes global optimization land-
scape of the MSE loss (3).
Theorem 3.3. (Benign landscape for MSE loss (3)) As-
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sume that the feature dimension d is larger than the num-
ber of classes K. The nonconvex MSE loss function
f(W ,H, b) in (3) is a strict saddle function.

This result is similar to that of (Zhu et al., 2021, Theorem
3.2), which showed that the unconstrained feature model
with CE loss is a strict saddle function. The high level
proof idea for Zhu et al. (2021) is to construct the negative
curvature direction for saddle points in the null space of
W ∈ RK×d, inspired by the recent advances on matrix
factorization problems (Bhojanapalli et al., 2016; Chi et al.,
2019; Ciliberto et al., 2017; Ge et al., 2016; 2017; Haef-
fele & Vidal, 2015; Li et al., 2019a;a;b). We refer to (Zhu
et al., 2021) for the detailed discussion on the connection
and differences between the two problems. Because the
proof in (Zhu et al., 2021) actually holds more generally
for any smooth convex loss function with weight decay, the
same technique also offers a proof for Theorem 3.3 (and
potentially can extend Theorem 3.3 for the rescaled MSE in
(4)). Here, it should be noted that we make the assumption
d > K so that the null space of W ∈ RK×d always exists.
However, we believe the strict saddle property holds for any
d and leave it as future work.

As a consequence, if H is a free optimization variable, this
implies that the global solutions of the training problem in
(3) can be efficiently found by many first-order and second-
order optimization methods (Bottou et al., 2018). In particu-
lar, (stochastic) gradient descent with random initialization
is guaranteed (Ge et al., 2015; Lee et al., 2016) to almost
surely find a global minimizer for strict saddle functions
with no spurious local minima, which is the case for our
problem (3). In comparison, existing results on MSE loss
(Han et al., 2022; Mixon et al., 2020) only studied the trajec-
tory of gradient flows (3) on either the linear terms (Mixon
et al., 2020) or the central path component (Han et al., 2022),
which is insufficient to explain/guarantee efficient, global
convergence of iterative optimization algorithms.

3.3. Delving Deeper into The Optimization Landscape:
Why Rescaling (4) Helps?

wk

wk′
wk′′

span{wk,wk′
}

hk,i
θ

s

Rd

Figure 1. Visualization method.

While our global land-
scape analysis for the
vanilla MSE loss (3) in
Section 3.2 implies that
a gradient based algo-
rithm converges to global
NC solutions asymptoti-
cally (Lee et al., 2016),
it did not characterize the
rate of convergence – in
other words, how fast an
optimization method converges. Often around the global
solutions (i.e., the simplex ETF), we expect that the land-
scape has certain regularity condition which measures how

well-aligned between the negative gradient direction and the
direction towards the global solution. Thus, the regularity
conditions in turn will characterize how fast a gradient based
method converges. For better understanding the regularity
properties and algorithmic convergences, we use visualiza-
tion techniques to visualize the optimization landscape of
MSE losses around the global ETFs solutions. In particular,
our visualization sheds light on (i) why training with vanilla
MSE loss performs worse than that of the CE loss, and (ii)
how the rescaling techniques in Section 2.2 improves the
performance of the MSE loss.

Even under the unconstrained feature model, visualization
of the MSE loss landscape could still be difficult, which
is due to the fact that the variables H,W , and b are all
high-dimensional. Here, we further simplify the problem by
assuming b = 0 and that W is at the global optimum and
forms a simplex ETF. Thus, we can examine the landscape
only with respect to (w.r.t.) the feature vectors hk,i for the
kth class. Although hk,i ∈ Rd is still high-dimensional for
large d, we plot the optimization landscape by restricting
hk,i to a 2D plane spanned by {wk,wk′}, where wk is
the classifier for the kth class and k′ ̸= k can be chosen
arbitrarily because the simplex ETF is invariant to rotations.
Finally, we visualize the landscape using the polar coordi-
nates, where the s-axis denotes the ℓ2 norm of hk,i and the
θ-axis denotes the angle between hk,i and wk (see Figure 1
for an illustration). The predicted membership for hk,i is
determined by θ and is invariant to s. Hence, larger gradient
along the θ direction may help with learning more discrimi-
native features. See Appendix C for a formal explanation.
This design choice allows us to examine the gradient in di-
rections co-linear to (i.e., with varying s) and perpendicular
to (i.e., with varying θ) the decision boundary separately.

In Figure 2, the visualizations of landscapes of different loss
functions are provided. As we observe from Figure 2a, the
landscape of vanilla MSE loss is steep w.r.t. s while it is
flat w.r.t. θ. Because the size of θ determines the closeness
to the right class, this implies that optimizing the vanilla
MSE loss will take a longer time to converge to a desired
solution with θ ≈ 0. In contrast, the landscape of CE loss
in Figure 2b is steeper w.r.t. θ than w.r.t. s in a large region
where s > 1 and θ < 1.5. This difference of the landscapes
around the global solutions potentially explains why CE
is a preferred choice than the vanilla MSE, given that the
features hk,i would converge faster to the simplex ETF
solutions via optimizing the CE loss. Nonetheless, the issue
with the vanilla MSE can be mitigated via the rescaling
approach that we discussed in Section 2.2.

To intuitively explain the effect of the rescaling approach
for MSE, we note that the gradient of the rescaled MSE
(denoted by fRMSE) w.r.t. a feature vector hk from k-th
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(a) Vanilla MSE (α = 1,M = 1) (b) Cross Entropy (c) Rescaled MSE (α = 5,M = 1) (d) Rescaled MSE (α = 1,M = 5)

Figure 2. Visualization of optimization landscape with different losses. We fix W as a simplex ETF and illustrate the landscape only
w.r.t. a feature hk,i. For each plot, the s-axis denotes ∥hk,i∥2, and the θ-axis denotes the angle arccos

(〈
hk,i,w

k
〉)

.

class is
∇hk

fRMSE = α(wk⊤h−M)wk +
∑
j ̸=k

(wj⊤h)wj ,

which indicates that α and M control the direction of hk

moves to. This is captured visually in Figure 2. Likewise,
the gradient of CE loss (denoted by fCE) is

∇hk
fCE = β(

∑
j ̸=k

ew
j⊤h)wk + β

∑
j ̸=k

ew
j⊤hwj ,

where β = 1/
∑K

j=1 e
wj⊤h. In the case when hk is close

to wk, ew
j⊤h ≈ 1 +wj⊤h for j ̸= k and thus

∇hk
fCE ≈ β(wk⊤h−K)wk + β

∑
j ̸=k

(wj⊤h)wj

since
∑

j w
j = 0. We can see that increasing M makes

∇hk
fRMSE more similar to ∇hk

fCE . As shown in Fig-
ures 2c and 2d, the rescaled MSE loss (4) (with large M ,
in particular), leads to a “better” optimization landscape
similar to that of the CE loss. Therefore, through study-
ing the NC and corresponding optimization landscapes, our
work provides intuitive explanations on (i) the incompe-
tence of the vanilla MSE loss (3), and (ii) the effectiveness
of rescaling (4) for classification tasks.

4. Experiments

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

3

depth = 2
depth = 4
depth = 6
depth = 8
depth = 10

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

3

width = 32
width = 128
width = 512
width = 2048

Figure 3. Learning curves of NC3 for Multilayer Perceptron (with
different depth and width) on CIFAR10 trained with MSE loss.

In this section, we conduct experiments to validate our find-
ings from Section 3 on practical networks and standard
datasets. We first introduce new metrics to better evaluate
how well the NC properties are satisfied in practical neural
networks, in addition to the ones used in (Papyan et al.,
2020; Zhu et al., 2021). Second, we verify our theoretical
results in Section 3.1 by showing that the NC phenomena

are algorithmic independent. Third, by a similar experiment
as in (Zhu et al., 2021), we show that we could fix the last
layer weights as a Simplex ETF while achieving comparable
generalization performances as explicitly training the classi-
fier. Finally, we examine our findings in Section 3.3 that the
rescaling factors in the rescaled MSE loss is beneficial for
forming benign optimization landscapes. For the details of
the experimental setup, we refer readers to the Appendix A.

New metrics for evaluating NC. To evaluate the
NC properties of well-trained neural networks, we adopt the
same NC1, NC2 and NC3 metrics as Papyan et al. (2020);
Zhu et al. (2021), which measure the within-class variability
of H , the convergence of W to a simplex ETF, and the
self-duality between H and W ; see Appendix A for the
details. To better measure NC, this paper also introduces
the following two metrics:

• Numerical rank. The NC1 metric measures the variabil-
ity collapse through the between-class and within-class
covariance matrices, which does not directly reveal the
dimensionality of the features spanned for each class. Ide-
ally, when NC happens, for each class the feature dimen-
sion should collapse to one. To measure the dimensional-
ity, we introduce a new metric that we call it numerical
rank, denoted by r̃ank(H) := 1

K

∑K
k=1

∥Hk∥2
∗

∥Hk∥2
F

. Here,
∥·∥∗ represents the nuclear norm (Recht et al., 2010) (i.e.,
the sum of singular values), while the Frobenius norm
∥·∥F in the denominator serves as a normalization factor.
The metric is evaluated by averaging over all the classes.
Our metric is inspired by the numeral sparsity (defined as
∥a∥21/∥a∥22 for a ∈ Rn) that serves as a stable measure
for sparsity of vectors (Lopes, 2013). For our numerical
rank, we expect that the smaller r̃ank(H) is, the more
collapsed the features are to their class means.

• Cosine margin. All current metrics measure NC from
a panoramic view, and do not quantify the behavior of
individual features. We introduce a metric based on the
consine margin of individual features. From the expla-
nation in Section 3.3, neural network determines the
class member by the direction of features rather than
its length. Thus, we define the cosine margin for each
sample as CMk,i = cos θk,i;k − max

j ̸=k
cos θk,i;j , where
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Figure 4. Illustration of NC , training and test accuracy and cosine margin across different training algorithms with ResNet18 on
CIFAR10. The networks are trained without data augmentation.
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Figure 5. Comparison of the performances on learned vs. fixed last-layer classifiers. We compare within-class variation collapse
NC1, self-duality NC3, training accuracy, test accuracy and cosine margin distribution PCM on fixed and learned classifier on CIFAR10-
ResNet18 with data augmentation. The network is trained by SGD optimizer.

cos θk,i;j =
⟨wj−wG,hk,i−hG⟩

∥wj−wG∥2 ∥hk,i−hG∥2
represents the cosine

of the angle between the feature hk,i and the j-th classi-
fier wj , hG denotes the global mean of all the features,
and wG denotes the mean of all the rows in W . Recall
that hk,i ∈ Rd denotes the feature of i-th sample in the
k-th class and wj ∈ Rd denotes the j-th row of the linear
classifier weight W ∈ RK×d. We sort the cosine margins
over the training dataset in the ascending order and denote
the resulted distribution as PCM . We note that a similar
metric has been explored by the work (Banburski et al.,
2021) as an alternative for the probability margin.5

The influence of the width and depth of neural networks
on the NC phenomenon. Our landscape analysis is built
on the unconstrained feature model, which is based on the
assumption that the network has large capacity. Here, we
conduct experiments on multilayer perceptron networks for
CIFAR10 to illustrate the effect of network capacity on
the degree of NC. From Figure 3, we observe that the
more expressive (wider/deeper) the network is (the more
parameters of the network), the more severe NC occurs.

The prevalence of NC across different optimization algo-
rithms. The benign landscape for optimization of neural
networks with vanilla MSE loss suggests the existence of
NC regardless of specific choice of the optimizer. We val-
idate this result by training ResNet18 on CIFAR10 with
vanilla MSE loss, using three different optimization al-
gorithms: SGD, Adam and L-BFGS. As shown in Fig-
ure 4, NC1,NC2, and NC3 converge to zero as training
progresses, regardless of algorithm used. Similar to the
observation for the CE loss in (Zhu et al., 2021), although
all algorithms lead to NC solutions, networks trained with

5The probability margin cannot be adopted here because prob-
ability is not well-defined as softmax is not used in the MSE loss.

different algorithms have notably different generalization
performances.6 We find the cosine distribution PCM con-
sistently aligns with the test accuracy, the more and higher.
This may due to the fact that different training methods have
different converge rate during the terminal phase of training,
and it further lead to different distribution of features.

Improving network efficiency via fixing classifiers as
simplex ETFs. In Theorem 3.1, when d ≥ K − 1 and the
weight decay terms are properly chosen, we showed that
the optimal classifier for the vanilla MSE loss is a simplex
ETF. This implies that we can (i) fix the last-layer classifier
as a simplex ETF, and (ii) reduce the feature dimension
d = K. By doing so, we substantially reduce the number of
trainable parameters without sacrificing the generalization
performance as shown in Figure 5.

Choice of the feature dimension d. On the other hand,
Theorem 3.1 shows that the optimal class means H

⋆
form a

simplex ETF only when d ≥ K − 1. If d < K − 1, then the
global solution H

⋆
is only the best rank-d approximation

of the simplex ETF, where the class-means of the each class
neither have equal length nor are maximally distant. To
demonstrate its effect, we run experiments on the CIFAR10
dataset using vanilla MSE loss and ResNet18, with both
d < K − 1 and d ≥ K − 1. As shown in Figure 6, even
though all cases exhibit NC, choosing d ≥ K − 1 is crucial
for fitting the training data and generalization to test data.
This is also corroborated by observing PCM , which shows
that more training samples lie on the decision boundary (i.e.,
CMk,i = 0) as d decreases in the range of d < K − 1. As
shown in Figure 6(e), this is in sharp contrast to CE loss

6L-BFGS with strong Wolfe line-search strategy may result in
quite small stepsize at the terminal phase of training. We think
that L-BFGS with proper diminishing stepsize can improve the
generalization ability.
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Figure 6. Comparison of the performances on networks with different feature dimensions d for MSE and CE losses. We compare
within-class variation collapse NC1, cosine margin distribution PCM , training accuracy, and test accuracy on learned classifier with
different feature dimension d on CIFAR10 using ResNet18 with data augmentation. The network is trained by the SGD optimizer.
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Figure 7. Effects of rescaling parameters α and M . Experiments are conducted on the miniImageNet dataset (MIN) with a ResNet18
backbone. Top row shows the result of varying α with fixed M . Bottom row shows the result of varying M with fixed α.

which produces similar performance for different d. Note
that all the existing work on CE loss (Fang et al., 2021; Graf
et al., 2021a; Papyan et al., 2020; Zhu et al., 2021) only
study the case when d ≥ K. In the Appendix, we visually
compare the features learned by CE and MSE, but we leave
the thorough analysis for CE loss as future work.

Experiments of the rescaled MSE loss. In Section 3.3,
we argued through landscape visualization that rescaling im-
proves the optimization landscape for the MSE loss around
the global solutions. Here, we corroborate our findings via
experiments, showing that rescaling of MSE indeed leads
to better NC and hence better optimization landscapes. In
particular, we empirically examine the effect of the two
rescaling parameters (α,M) on the NC phenomenon and
the generalization performance. In Figure 7, we run ex-
periments on the miniImageNet (Vinyals et al., 2016) with
ResNet18. We notice that when one scaling factor is fixed,
the other parameter has a positive correlation with the degree
of NC as well as the training and test performances. This
observation is well-aligned with our analysis in Section 3.3.

5. Conclusion
In this work, we provide a global landscape analysis for
deep neural networks trained via the MSE loss, under the
unconstrained feature model. Our theoretical results reveal
that all global solutions exhibit the NC phenomenon, and

that the global landscape is benign in the sense that it does
not have spurious local minimizers. Such results extend
the scope where NC provably occurs with the MSE loss,
which was restricted to neural networks trained via partic-
ular and unrealistic algorithms in prior work (Han et al.,
2022; Mixon et al., 2020). More broadly, our results ex-
tend the scope of the “prevalence of neural collapse” in the
seminal work (Papyan et al., 2020), which was restricted
to neural networks trained via the CE loss. Combined with
the results in (Zhu et al., 2021), the prevalence of neural
collapse now subsumes (at least) that deep neural networks
trained for classification tasks with both CE and MSE losses
exhibit neural collapse, regardless of the training algorithm
(as long as it can escape strict saddle points) and network
architecture (as long as it is sufficiently expressive).
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Notations and Organizations. For a scalar function f(Z) with a variable Z ∈ RK×N , its Hessian can be represented by
a bilinear form defined via [∇2f(Z)](A,B) =

∑
i,j,k,ℓ

∂2f(Z)
∂zijzkℓ

aijbkℓ for any A,B ∈ RK×N , which avoids representing
the Hessian as a tensor, or vectorizing the variable Z. We will use the bilinear form for the Hessian throughout the Appendix.
Now we give the formal definition of Simplex ETF.

Definition .1 (K-Simplex ETF (Papyan et al., 2020; Strohmer & Heath Jr, 2003)). A standard Simplex ETF is a collection
of points in RK specified by the columns of

M =

√
K

K − 1

(
IK − 1

K
1K1⊤

K

)
,

where IK ∈ RK×K is the identity matrix, and 1K ∈ RK is the all ones vector.

As in (Fang et al., 2021; Papyan et al., 2020), in this paper we consider general Simplex ETF as a collection of points in Rd

specified by the columns of
√

K
K−1P

(
IK − 1

K1K1⊤
K

)
, where (i) when d ≥ K, P ∈ Rd×K is an orthonormal matrix, i.e.,

P⊤P = IK , and (ii) when d = K − 1, P is chosen such that
[
P⊤ 1√

K
1K

]
is an orthonormal matrix.

The appendix is organized as follows. In Appendix A, we describe the datasets, network architectures and training settings.
In Appendix B, we provide a detailed proof for Theorem 3.1, analyzing the global minimizers to our regularized MSE
loss. Finally, in Appendix C we provide additional details for obtaining the visualization of rescaled MSE and CE losses
presented in Section 3.3.

A. Datasets, Network Architectures and Training, and Three Neural Collapse Measures
In Section 4, we conduct experiments on CIFAR10 (Krizhevsky et al., 2009) and miniImageNet (Vinyals et al., 2016)
datasets. We note that for miniImageNet dataset, since we are not doing few-shot learning where the work (Vinyals et al.,
2016) primarily considers, we split the total 60000 images into training set (50000 images) and validation set (10000 images)
such that both training and validation set include the full 100 classes. All images from the datasets are normalized by their
mean and variance channel-wise. We use the ResNet18 (He et al., 2016) architecture throughout all the experiments. For
CIFAR10, we use the same experiment setting in (Zhu et al., 2021) except the replacement of CE loss by standard MSE
loss for fair comparison. Specifically, we train ResNet18 for 200 epochs with three different optimizers: SGD, Adam
and LBFGS. For SGD, the initial learning rate and momentum are set to 0.05 and 0.9, respectively. For Adam, the initial
learning rate, β1 and beta2 are set to 0.001, 0.9 and 0.999, respectively. We decay the learning rate by 0.1 every 40 epochs
for SGD and Adam. We use LBFGS with an initial learning rate of 0.01 and strong Wolfe line search strategy for subsequent
iterations. Without explicitly mentioned, we use the weight decay of 5× 10−4 and the same data augmentation in (Zhu et al.,
2021) for all experiments on CIFAR10. For miniImageNet, we use the rescaled MSE loss as described in Section 2.2 with
the SGD optimizer with an initial learning rate 0.01, momentum 0.9 and weight decay 0.001. We use a Cosine Annealing
Warm Restarts (Loshchilov & Hutter, 2017) learning rate scheduler where the number of epochs before the first restart is set
as 200 and the minimum learning rate is 0.0001.

Three NC measures NC1-NC3 (Papyan et al., 2020; Zhu et al., 2021) For the sake of completeness, we describe
the three NC measures NC1-NC3 (Papyan et al., 2020; Zhu et al., 2021) used in Section 4. Towards that end, first
define the global mean of the last-layer features {hk,i} as hG = 1

nK

∑K
k=1

∑n
i=1 hk,i and the class mean as hk =

1
n

∑n
i=1 hk,i (1 ≤ k ≤ K).

• NC1. We measure the within-class variability collapse by

NC1 :=
1

K
trace

(
ΣWΣ†

B

)
, (6)

where ΣW := 1
nK

∑K
k=1

∑n
i=1

(
hk,i − hk

) (
hk,i − hk

)⊤ ∈ Rd×d denotes the within-class covariance of the features,

ΣB := 1
K

∑K
k=1

(
hk − hG

) (
hk − hG

)⊤ ∈ Rd×d represents the between-class covariance, and Σ†
B denotes the

pseudo inverse of ΣB .
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(a) MSE (b) CE

Figure 8. Visual comparison of features learned by MSE and CE losses with feature dimension d = 3. We compare the training
feature distribution by setting the feature dimension d = 3 for ResNet18 and training it with CIFAR10. The network is trained by the
SGD optimizer.

• NC2. We measure the onvergence of the learned classifier W ∈ RK×d (for d ≥ K − 1) to a Simplex ETF by

NC2 :=

∥∥∥∥ WW⊤

∥WW⊤∥F
− 1√

K − 1

(
IK − 1

K
1K1⊤

K

)∥∥∥∥
F

, (7)

where the Simplex ETF and WW⊤ are rescaled to have unit energy (in Frobenius norm).

• NC2. For d ≥ K − 1, we measure the convergence to self-duality between the learned features H and the learned
classifier W via

NC3 :=

∥∥∥∥∥ WH∥∥WH
∥∥
F

− 1√
K − 1

(
IK − 1

K
1K1⊤

K

)∥∥∥∥∥
F

, (8)

where H :=
[
h1 − hG · · · hK − hG

]
∈ Rd×K are the centered class-means.

Visual comparison of features learned by MSE and CE losses with feature dimension d = 3. To visualize the learned
features, we set the feature dimension d = 3 for ResNet18 and train it with CIFAR10. Figure 8 display the learned features
with MSE loss and CE loss on randomly selected 100 training samples for each class. We observe that the features learned
by CE loss is more diverse and discriminative than MSE loss.

B. Proof of Theorem 3.1
In this part of appendices, we prove Theorem 3.1 in Section 3 that we restate as follows.

Theorem B.1 (Global Optimality Condition). Let (W ⋆,H⋆, b⋆) be a global minimizer of

min
W ,H,b

f(W ,H, b) :=
1

2N

∥∥WH + b1⊤ − Y
∥∥2
F

+
λW
2

∥W ∥2F +
λH
2

∥H∥2F +
λb
2

∥b∥22 . (9)

Then (W ⋆,H⋆, b⋆) satisfies:
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(NC1,3) If λWλH < 1
NK , then (W ⋆,H⋆) satisfies NC1 and NC3 as

h⋆
k,i = h

⋆

k,

√
λW
λHn

w⋆k = h
⋆

k, ∀ k ∈ [K], i ∈ [n].

Otherwise, if λWλH ≥ 1
NK , then W ⋆ = 0 and H⋆ = 0.

(NC2) If λWλH < 1
NK , then H

⋆
further obeys the following properties for different d:

1. If d < K−1: we have H
⋆⊤

H
⋆
= C1Pd(I− 1

K1K1⊤
K), where Pd(M) denotes the best rank-d approximating

of M ;

2. If d = K − 1: we have H
⋆⊤

H
⋆
= C2(I − 1

K1K1⊤
K);

3. If d ≥ K: we have

H
⋆⊤

H
⋆
=

C3

(
I − 1

K1K1⊤
K

)
, λb ≤

√
KNλW λH

1−
√
KNλW λH

,

C4

(
I −

√
nλW λH

λb(1−
√
KNλW λH)

1K1⊤
K

)
, otherwise,

where
√
nλW λH

λb(1−
√
KNλW λH)

≤ 1
K in the second case since λb ≥

√
KNλW λH

1−
√
KNλW λH

.

Here, C1, C2, C3, and C4 are some positive numerical constants that depend on λW , λH , λb.

(Bias) The bias satisfies b⋆ = b⋆1K with b⋆ ≤ 1
K given by:

1. If d < K: we have b⋆ = 1
K(λb+1) ;

2. If d ≥ K: we have b⋆ =

{
1

K(λb+1) , λb ≤
√
KNλW λH

1−
√
KNλW λH

,
√
nλW λH

λb
, otherwise.

In particular, when λb → 0, we have b⋆ → 1
K ; when λb → ∞, we have b⋆ → 0.

B.1. Main Proof

Proof of Theorem B.1. We first characterize the solutions (W ,H) in terms of b. Denote by Ỹ = Y − b1⊤ and let
Ỹ = UΣV ⊤ =

∑K
i=1 σiuiv

⊤
i be its SVD, where σ1 ≥ σ2 ≥ · · · ≥ σK ≥ 0 are the singular values. For convenience, we

denote by λ̃ = N
√
λWλH . By Lemma B.1, we know

f(W ,H, b) ≥ λb
2

∥b∥22 +
1

N
·


K∑
i=1

1
2

(
σi −

[
σi − λ̃

]
+

)2

+ λ̃
[
σi − λ̃

]
+
, d ≥ K

d∑
i=1

1
2

(
σi −

[
σi − λ̃

]
+

)2

+ λ̃
[
σi − λ̃

]
+
+

K∑
i=d+1

1
2σ

2
i , d < K

(10)

where the inequality becomes an equality when WH =
∑min(d,K)

i=1

[
σi −

√
λWλH

]
+
uiv

⊤
i .

Noting that the singular values σi also depend on b, to minimize the right hand side (RHS) of (10) in terms of b, we first
rewrite each term involving the singular value as

1

2

(
σi −

[
σi − λ̃

]
+

)2

+ λ̃
[
σi − λ̃

]
+
=

{
1
2σ

2
i , σi ≤ λ̃,

λ̃σi − 1
2 λ̃

2, σi ≥ λ̃,
(11)

where for both cases it increases as σi increases. Thus, for any b with the same energy, say c, minimizing the RHS of (10)
is equivalent to minimizing the singular values σi. With this in mind, we now show that if b⋆ is a minimizer to RHS of
(10), then ∥b⋆∥ ≤ 1√

K
. By Lemma B.2, we know for any b we have σ2 = σ3 = · · · = σK−1 =

√
n and σ1 ≥

√
n (see

(25)). On the other hand, when b = 1
K1, we have σ1 = σ2 = · · · = σK−1 =

√
n and σK = 0, which are the smallest

possible singular values that can be achieved. Thus, considering the weight decay term on (10), the minimizer b⋆ must
satisfy ∥b⋆∥ ≤

∥∥ 1
K

∥∥ = 1√
K

.

Therefore, we only need to optimize over b with ∥b∥ = c ≤ 1√
K

. It this case, it follows from Lemma B.2 that σ2 = · · · =

σK−1 =
√
n, σ1 ≥

√
n, σK ≥

√
n
(
1−

√
Kc
)

, and both inequalities become equalities if and only if b = c√
K
1. The
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remaining is to optimize the RHS of (10) in terms of σK which depends on c. By (10) and (11), this problem reduces to

min
0≤c≤ 1√

K

λb
2
c2 +

n

2N

(
1−

√
Kc
)2

(12)

if d < K, and otherwise reduces tomin0≤c≤ 1√
K

λb

2 c
2 + λ̃

N

(√
n
(
1−

√
Kc
)
− 1

2 λ̃
)
,

√
n
(
1−

√
Kc
)
≥ λ̃

min0≤c≤ 1√
K

λb

2 c
2 + n

2N

(
1−

√
Kc
)2
,

√
n
(
1−

√
Kc
)
≤ λ̃

(13)

We now consider the two cases as follows:

1. Case I: d < K. In this case, the problem (12) achieves its minimum at c⋆ = 1√
K(λb+1)

.

2. Case II: d ≥ K. In this case, when c ≥ 1√
K

(
1− λ̃√

n

)
, problem (13) becomes (12), and thus its minimum among

c ≥ 1√
K

(
1− λ̃√

n

)
is c⋆ = max

(
1√

K(λb+1)
, 1√

K

(
1− λ̃√

n

))
. On the other hand, when c ≤ 1√

K

(
1− λ̃√

n

)
,

the problem (13) is also a quadratic function on c and achieves its minimum among c ≤ 1√
K

(
1− λ̃√

n

)
is c⋆ =

min
(

λ̃
λb

√
N
, 1√

K

(
1− λ̃√

n

))
.

We now find the minimum value among these two cases. When 1√
K(λb+1)

≥ 1√
K

(
1− λ̃√

n

)
, i.e., λb ≤

√
KNλW λH

1−
√
KNλW λH

,

we have λ̃
λb

√
N

≥ 1√
K

(
1− λ̃√

n

)
, which together with the form of the two quadratic functions implies that the minimum

is achieved when c⋆ = 1√
K(λb+1)

. On the other hand, when 1√
K(λb+1)

< 1√
K

(
1− λ̃√

n

)
, i.e., λb >

√
KNλW λH

1−
√
KNλW λH

,

we have λ̃
λb

√
N
< 1√

K

(
1− λ̃√

n

)
, which together with the form of the two quadratic functions implies that the

minimum is achieved when c⋆ = λ̃
λb

√
N

=
√
NλW λH

λb
. Thus, we can also conclude that c⋆ → 0 when λb → ∞ and

c⋆ → 1√
K

when λb → 0.

The proof is completed by invoking Lemma B.3 to characterize (W ⋆,H⋆).

B.2. Supporting Lemmas

We first characterize the following balance property between W and H for any critical point (W ,H, b) of our loss
function:

Lemma B.1. For any K, d,N , and Ỹ ∈ RK×N with SVD given by Ỹ = UΣV ⊤ =
∑K

i=1 σiuiv
⊤
i where σ1 ≥ σ2 ≥

· · · ≥ σK ≥ 0 are the singular values, the following problem

min
W∈RK×d,H∈Rd×N

ξ(W ,H) =
1

2

∥∥∥WH − Ỹ
∥∥∥2
F

+
λW
2

∥W ∥2F +
λH
2

∥H∥2F (14)

is a strict saddle function with no spurious local minimizer, in the sense that

• Any local minimizer (W ⋆,H⋆) of (14) is a global minimizer of (14), with the following form

W ⋆H⋆ =

min(d,K)∑
i=1

ηiuiv
⊤
i ,

where we let ηi(λW , λH) :=
[
σi −

√
λWλH

]
+

. Correspondingly, the minimal objective value of (14) is

ξ⋆ =

{∑K
i=1

1
2 (σi − ηi)

2
+

√
λWλH ηi, d ≥ K∑d

i=1
1
2 (σi − ηi)

2
+

√
λWλH ηi +

∑K
i=d+1 σ

2
i , d < K

. (15)

• Any critical point (W ,H) of (14) that is not a local minimizer is a strict saddle with negative curvature, i.e. the
Hessian at this critical point has at least one negative eigenvalue.
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Proof of Lemma B.1 . By definition, any critical point (W ,H) of (14) satisfies the following:

∇W ξ(W ,H) = (WH − Ỹ )H⊤ + λWW = 0,

∇Hξ(W ,H) = W⊤(WH − Ỹ ) + λHH = 0.

By left multiplying the first equation by W⊤ on both sides and then right multiplying second equation by H⊤ on both sides
and combining the equations together, we obtain

λWW⊤W = λHHH⊤. (16)

This further gives
λW
λH

WW⊤W + λWW = Ỹ H⊤,

λH
λW

H⊤HH⊤ + λHH⊤ = Ỹ ⊤W .

(17)

In the following, without loss of generality, we assume that the critical point (W ,H) satisfying the above equations has the
form

W =
[
Ŵ 0

]
, H =

[
Ĥ
0

]
(18)

where the columns of Ŵ are orthogonal and the rows of Ĥ are orthogonal, and the zeros 0 in W and H might or might not
exist depending on the rank of W and H . The underlying reasoning is that, for any W satisfying (17), the Gram-Schmidt
process implies that we can always orthogonalize W by an orthonormal matrix R ∈ Rd×d (i.e., R⊤R = RR⊤ = I),
such that W̃ = WR =

[
Ŵ 0

]
. On the other hand, let H̃ = R⊤H . Because λWW⊤W = λHHH⊤, we have

λW W̃⊤W̃ = λHH̃H̃⊤, which implies that the rows of H̃ are also orthogonal. Therefore, multiply R on both sides of
(17), we always have

λW
λH

W̃W̃⊤W̃ + λW W̃ = Ỹ H̃⊤,
λH
λW

H̃⊤H̃H̃⊤ + λHH̃⊤ = Ỹ ⊤W̃ .

Thus, we can verify that (W̃ , H̃) is also a critical point with W̃ H̃ = WH and has the same Hessian information as
(W ,H). Thus, without the loss of generality, we can assume orthogonal (W ,H) in the form (18), but with possible zero
columns.

Form of the global solutions. Based on the orthogonalization, we further decompose (17) for all i = 1, · · · , d columns of
W as (

λW
λH

∥wi∥2 + λW

)
wi = Ỹ hi,(

λH
λW

∥∥hi
∥∥2 + λH

)
hi = Ỹ ⊤wi,

(19)

which implies that either (i) wi = 0 and hi = 0, or (ii) wi,h
i are the (scaled) left and right singular vectors of Ỹ . In

particular, when wi ̸= 0 and hi ̸= 0, then by (16), it gives∥∥hi
∥∥2 =

λW
λH

∥wi∥2 . (20)

By further plugging the equation above into (19), it gives(√
λW
λH

∥wi∥2 +
√
λWλH

)
wi

∥wi∥
= Ỹ

hi

∥hi∥
,(√

λW
λH

∥wi∥2 +
√
λWλH

)
hi

∥hi∥
= Ỹ ⊤ wi

∥wi∥
.

(21)
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Thus, when wi ̸= 0 and hi ̸= 0, we conclude that
√

λW

λH
∥wi∥2 +

√
λWλH is a singular value of Ỹ , say σij , and wi

∥wi∥

and hi

∥hi∥ are the corresponding left and right singular vectors, respectively. In other words, when wi ̸= 0 and hi ̸= 0, then

σij =

√
λW
λH

∥wi∥2 +
√
λWλH , uij =

wi

∥wi∥
, vij =

hi

∥hi∥
(22)

for some ij such that σij >
√
λWλH . Together with (20), it further implies that

wih
i⊤ = ∥wi∥22

wi

∥wi∥2
hi⊤

∥wi∥2
=

√
λW
λH

∥wi∥22
wi

∥wi∥2
hi⊤

∥hi∥2
=
(
σij −

√
λWλH

)
uijv

⊤
ij .

Next, we discuss global minimizers and global function values in two cases: (i) d ≥ K, and (ii) d < K. For both cases,
based on the above results, we can write

WH⊤ =

d∑
i=1

wih
i⊤ =

∑
wi ̸=0,hi ̸=0

(
σij −

√
λWλH

)
uijv

⊤
ij +

∑
wi=0 and hi=0

wih
i⊤

=
∑

wi ̸=0,hi ̸=0

(
σij −

√
λWλH

)
uijv

⊤
ij .

Case I: d ≥ K. In this case, given the rank of W is at most K, we know that the minimum is achieved when

W ⋆H⋆ =

K∑
i=1

[
σi −

√
λWλH

]
+
uiv

⊤
i

with σi ≥
√
λWλH for all i = 1, · · · ,K. In this case, we have

ξ⋆ =
1

2

K∑
i=1

([
σi −

√
λWλH

]
+
− σi

)2

+
λW
2

d∑
i=1

∥wi∥22 +
λH
2

d∑
i=1

∥∥hi
∥∥2
2

=
1

2

K∑
i=1

([
σi −

√
λWλH

]
+
− σi

)2

+ λW

d∑
i=1

∥wi∥22

=
1

2

K∑
i=1

([
σi −

√
λWλH

]
+
− σi

)2

+
√
λHλW

K∑
i=1

[
σi −

√
λWλH

]
+
,

where for the second and third equality, we used (20) and (22), respectively.

Case II: d < K. In this case, we know that the minimum is achieved when

W ⋆H⋆ =

d∑
i=1

[
σi −

√
λWλH

]
+
uiv

⊤
i

with σi ≥
√
λWλH for all i = 1, · · · , d. Similarly, we have

ξ⋆ =
1

2

d∑
i=1

([
σi −

√
λWλH

]
+
− σi

)2

+
√
λHλW

d∑
i=1

[
σi −

√
λWλH

]
+
+

K∑
i=d+1

σ2
i ,

where the extra term
∑K

i=d+1 σ
2
i is coming from the singular values of Ŷ and the decomposition of 1

2

∥∥∥WH − Ỹ
∥∥∥2
F

+

λW

2 ∥W ∥2F .

In summary, the minimum function value is obtained when

W ⋆H⋆ =

min{d,K}∑
i=1

[
σi −

√
λWλH

]
+
uiv

⊤
i =

min{d,K}∑
i=1

ηiuiv
⊤
i , (23)

with ηi(λW , λH) :=
[
σi −

√
λWλH

]
+

, and the minimum function value is attained as in (15).

Showing negative curvature for strict saddles. In the remaining part, we show those critical point (W ,H) that does not
satisfy the condition in (23) are strict saddle points, by showing that the Hessian of (14) has negative eigenvalues. First, we
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derive the directional Hessian of (14), which has the following form

2[∇2ξ(W ,H)](∆,∆) = ∥∆WH +W∆H∥2F + 2
〈
WH − Ỹ ,∆W∆H

〉
+ λW ∥∆W ∥2F + λH ∥∆H∥2F . (24)

Given that a critical point (W ,H) is not a global minimizer, then (23) is not satisfied. This implies that there must exist
a singular value of Ŷ with σj >

√
λWλH , which cannot be not covered by any (wi,hi) in the sense that wjh

j⊤ ̸=
(σj −

√
λWλH)ujv

⊤
j for some j. We now discuss this situation separately in two cases: (i) d ≥ K, and (ii) d < K.

Case I: d ≥ K. In this case, since each column of W is either zero or corresponds to the left singular vectors of Ỹ ,
it implies that the column space of W has a non-trivial null space, i.e., there must exist a unit vector α ∈ Rd such
that Wα = 0. Since λWW⊤W = λHHH⊤, we also have α⊤H = 0. With this property, for the index j with

wjh
j⊤ ̸= (σj −

√
λWλH)ujv

⊤
j , we construct ∆W =

(
λH

λW

)1/4
ujα

⊤,∆H =
(

λW

λH

)1/4
αv⊤

j . Given that ∆WH = 0

and W∆H = 0

∥∆WH +W∆H∥2F = 0,〈
WH − Ỹ ,∆W∆H

〉
= −σj ,

λW ∥∆W ∥2F + λH ∥∆H∥2F = 2
√
λWλH .

Plugging this into the Hessian (24), it gives

2[∇2ξ(W ,H)](∆,∆) = −2σj + 2
√
λWλH = −2(σj −

√
λWλH) < 0.

This implies that there exists a negative curvature for the Hessian, and the saddle point must be strict saddle.

Case II: d < K. Recall from (18) and (22) that
√

λW

λH
W⊤W is a diagonal matrix with the values of diagonal entry from{[

σ1 −
√
λWλH

]
+
, . . . ,

[
σK −

√
λWλH

]
+
, 0
}

, but here it excludes
[
σj −

√
λWλH

]
+

which equals σj −
√
λWλH

by our assumption. Thus,
√

λW

λH
W⊤W has at least one diagonal entry which is strictly smaller than σj −

√
λWλH . Now

let α ∈ Rd be the eigenvector associated with the smallest eigenvalue of W⊤W , so that

ν :=

√
λW
λH

α⊤W⊤Wα < σj −
√
λWλH .

Since λWW⊤W = λHHH⊤, we also have
√

λH

λW
α⊤H⊤Hα = ν. With this property, we construct ∆W =(

λH

λW

)1/4
ujα

⊤,∆H =
(

λW

λH

)1/4
αv⊤

j , which satisfies

∥∆WH +W∆H∥2F =

√
λW
λH

α⊤W⊤Wα+

√
λH
λW

α⊤H⊤Hα = 2ν,〈
WH − Ỹ ,∆W∆H

〉
= −σj ,

λW ∥∆W ∥2F + λH ∥∆H∥2F = 2
√
λWλH .

Plugging this into the Hessian quadratic form gives

2[∇2ξ(W ,H)](∆,∆) = 2ν − 2σj + 2
√
λWλH = −2(σj −

√
λWλH − ν) < 0.

Therefore, we prove (W ,H) is a strict saddle for both cases. This completes the proof.

Lemma B.2. Assume the number of training samples in each class is balanced, i.e., n = n1 = · · · = nK , and let
Y =

[
y1 · · · y1 y2 · · · yK

]
∈ RK×nK be the matrix that contains the one-hot vectors for all the training

samples. Then Ỹ = Y − b1⊤ has at least K − 2 singular values being
√
n. The rest of the two singular values, without

loss of generality, denoted by σ1 and σK , depend on b. Then, we have the following lower bounds for σ1 and σK .
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1. For any b, the largest singular value σ1 can be lower bounded by

σ1 ≥
√
nmax

(√
1 +K

(
∥b∥2 − 1

K
(1⊤b)

2

)
,
∣∣1− 1⊤b

∣∣) . (25)

2. For any b on the sphere {b ∈ RK : ∥b∥ = c} with c ≤ 1√
K

, we have

σ1 ≥
√
n, σK ≥

√
n
(
1−

√
Kc
)

(26)

and both inequalities become equalities if and only if b = c√
K
1.

Proof of Lemma B.2. To study the singular values of Y , it is equivalent to look at the eigenvalues of the Gram matrix of
Ỹ ⊤:

G = Ỹ Ỹ ⊤ =
(
Y − b1⊤) (Y − b1⊤)⊤ = n

(
I − b1⊤ − 1b⊤ +Kbb⊤

)
.

If b is aligned with 1, i.e., they live in the same line, then −b1⊤ − 1b⊤ + Kbb⊤ is a rank-1 matrix and G has K − 1

eignevalues being n and the rest eigenvalue being n
(
1− 1⊤b

)2
. On the other hand, if b is not aligned with 1, then

−b1⊤ −1b⊤ +Kbb⊤ is a rank-2 matrix and G has K − 2 eignevalues being n. In this case, the rest of the two eigenvalues,
denoted by π1 and πK , correspond to the eigenvectors within the subspace spanned by 1 and b.

To estimate the largest eigenvalues π1, we construct two orthonormal vectors within this subspace spanned by 1 and b and
compute the corresponding Rayleigh quotient. Specifically, we first compute the Rayleigh quotient along the direction 1 as

1⊤G1

1⊤1
=

n

K

(
K − 2K1⊤b+K

(
1⊤b

)2)
= n

(
1− 21⊤b+

(
1⊤b

)2)
= n

(
1− 1⊤b

)2
.

Use Gram-Schmidt orthonormalization to obtain the other direction as a = b− 1
K1⊤b1, which gives the following Rayleigh

quotient:

a⊤Ga

a⊤a
=

n

∥a∥2

(
∥a∥2 +K

(
∥b∥2 − 1

K

(
1⊤b

)2)2
)

= n+ nK

(
∥b∥2 − 1

K

(
1⊤b

)2)
,

where the last equality follows because ∥a∥2 = ∥b∥2 − 1
K

(
1⊤b

)2
. Thus, by the min-max theorem (i.e.,

Courant–Fischer–Weyl min-max principle), we have

π1 ≥ max

(
1⊤G1

1⊤1
,
a⊤Ga

a⊤a

)
≥ max

(
n
(
1− 1⊤b

)2
, n+ nK

(
∥b∥2 − 1

K

(
1⊤b

)2)) ≥ n,

where the last inequality becomes an inequality if and only if b is a scaled version of the vector 1, i.e., b =
∥b∥√
K
1.

To obtain a lower bound for πK whenever ∥b∥ ≤ 1√
K

, we again use the the min-max theorem as

1

n
πK ≥ min

∥u∥=1

1

n
u⊤Gu = min

∥u∥=1
1− 2u⊤b1⊤u+K(u⊤b)2

≥ min
∥u∥=1

1− 2
√
K
∣∣u⊤b

∣∣+K(u⊤b)2

≥ 1− 2
√
K ∥b∥ +K ∥b∥2 =

(
1−

√
K ∥b∥

)2
,

where the first inequality achieves equality when u is restricted to the subspace spanned by 1 and b, the second inequality
becomes an equality only when u = 1/

√
K and u⊤b ≥ 0 or u = −1/

√
K and u⊤b ≤ 0, and the last inequality achieves

equality if and only if u is aligned with b, i.e.,
∣∣u⊤b

∣∣ = ∥b∥. Thus, for any b on the sphere {b ∈ RK : ∥b∥ = c} with

c ≤ 1√
K

, πK achieves its minimum possible value n
(
1−

√
K ∥b∥

)2
if and only if b = ± c√

K
1. This completes the proof.

Lemma B.3. Assume the number of training samples in each class is balanced, i.e., n = n1 = · · · = nK , and let
Y =

[
y1 · · · y1 y2 · · · yK

]
∈ RK×nK be the matrix that contains the one-hot vectors for all the training
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samples. Suppose b⋆ ≤ 1
K . Then any global minimizer (W ⋆,H⋆) of

min
W ,H

1

2N

∥∥WH + b⋆11⊤ − Y
∥∥2
F

+
λW
2

∥W ∥2F +
λH
2

∥H∥2F . (27)

satisfies the self-duality

h⋆
k,i =

√
λW
λHn

w⋆k, ∀ k ∈ [K], i ∈ [n].

Moreover, if λWλH ≥ 1
NK , then W ⋆ = 0 and H⋆ = 0. On the other hand, if λWλH < 1

NK , (W ⋆,H⋆) further obeys
the following properties for different d:

1. d < K − 1: W ⋆W ⋆⊤ ∼ Pd(I − 1
K1K1⊤

K) where Pd denotes the best rank-d approximating and A ∼ B means that
there is a constant c such that A = cB;

2. d = K − 1: In this case, W ⋆W ⋆⊤ ∼ IK − 1
K1K1⊤

K;

3. d ≥ K and b⋆ ≥ 1
K −

√
nλWλH : W ⋆W ⋆⊤ ∼ IK − 1

K1K1⊤
K;

4. d ≥ K and b⋆ < 1
K −

√
nλWλH : W ⋆W ⋆⊤ ∼ I − b⋆

1−K
√
nλW λH

1K1⊤
K;

Proof of Lemma B.3. For convenience, let 1K×L represents an all-ones matrix of sizeK×L. Since Y −b⋆1K×nK contains
many repeated columns, we first consider Y = IK − b⋆1K×K that contains the non-repeated columns of Y − b⋆1K×nK .
Let Y = UΣU⊤ be the eigenvalue decomposition, where U ∈ RK×K is an orthonormal matrix and Σ ∈ RK×K

is a diagonal matrix with eigenvalues σ1 ≥ · · ·σK along the diagonals. Since b⋆ ≤ 1
K , the eigenvalues are given by

σ1 = · · · = σK−1 = 1 ≥ σK = 1 − b⋆K, and the eigenvector corresponding to σK is uK = 1√
K
1, which implies that

[U ]K−1[U ]⊤K−1 = I − 1
K1K1⊤

K , where [U ]r means a K × r submtraix of U by taking the first r columns.

Let Σ =
√
nΣ and V ⊤ = 1√

n

[
u1 · · · u1 u2 · · · uK

]
∈ RK×nK that repeats the rescaled version of the column

of U n times so that V ⊤V = U⊤U = I . By noting the relation between Y − b⋆1K×nK and Y , we know UΣV ⊤ is the
SVD of Y − b⋆1K×nK . When λWλH ≥ 1

NK , by applying Lemma B.1 and Lemma B.2, we conclude that W ⋆ = 0 and
H⋆ = 0 since

√
n−N

√
λWλH ≤ 0. We now assume λWλH < 1

NK and utilize Lemma B.1 and Lemma B.2 again for
the following cases:

1. d < K − 1: In this case, we have

W ⋆ =

√
λH
λW

(√
n−N

√
λWλH

)1/2
U(:, 1 : d)R,

H⋆ =

√
λW
λH

(√
n−N

√
λWλH

)1/2
R⊤V (:, 1 : d)⊤,∀R ∈ Rd×d,R⊤R = I.

Thus, h⋆
k,i =

√
λW

λHnw
⋆k and W ⋆W ⋆⊤ ∼ U(:, 1 : d)U(:, 1 : d)⊤ = Pd(I − 1

K1K1⊤
K).

2. d = K − 1: In this case, we have

W ⋆ =

√
λH
λW

(√
n−N

√
λWλH

)1/2
U(:, 1 : K − 1)R,

H⋆ =

√
λW
λH

(√
n−N

√
λWλH

)1/2
R⊤V (:, 1 : K − 1)⊤,∀R ∈ R(K−1)×(K−1),R⊤R = I.

Thus, h⋆
k,i =

√
λW

λHnw
⋆k and W ⋆W ⋆⊤ ∼ [U ]K−1[U ]⊤K−1 = IK − 1

K1K1⊤
K .

3. d = K: In this case, we have

W ⋆ =

√
λH
λW

U
[
Σ−N

√
λWλH

]1/2
+

R,

H⋆ =

√
λW
λH

R⊤
[
Σ−N

√
λWλH

]1/2
+

V ⊤, ∀R ∈ RK×K ,R⊤R = I
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Thus, h⋆
k,i =

√
λW

λHnw
⋆k. Moreover, if N

√
λWλH ≥

√
n(1− b⋆K), i.e., b⋆ ≥ 1

K −
√
nλWλH , then W ⋆W ⋆⊤ ∼

[U ]K−1[U ]⊤K−1 = IK − 1
K1K1⊤

K . On the other hand, if b⋆ < 1
K −

√
nλWλH , then

W ⋆W ⋆⊤ ∼ UΣU⊤ −K
√
nλWλHUU⊤ = σK = I − b⋆1K1⊤

K −N
√
λWλHI

= (1−K
√
nλWλH)I − b⋆1K1⊤

K ∼ I − b⋆

1−K
√
nλWλH

1K1⊤
K .

4. d > K: In this case, we have

W ⋆ =

√
λH
λW

[
U
[
Σ−N

√
λWλH

]1/2
+

0
]
R,

H⋆ =

√
λW
λH

R⊤

[[
Σ−N

√
λWλH

]1/2
+

V ⊤

0

]
, ∀R ∈ Rd×d,R⊤R = I.

One can verify that (W ⋆,H⋆) satisfies the same properties as in the case of d = K.

C. Visualization of Optimization Landscape
C.1. Details of the Visualization Technique

We provide the technical details on how the visualization in Section 3.3 is obtained.

The following result expresses the output of the classifier layer for a feature vector h as a function of the norm of h and its
angle to a classifier weight vector wk.

Proposition C.1. Given any d ≥ K − 1 > 1, take the classifier weights W , b to be such that W is an arbitrary K-Simplex
ETF (see Definition .1) and b = 0. Take any k, k′ ∈ {1, . . . ,K}, and consider a vector h on the two-dimensional plane
span{wk,wk′} parameterized in the polar coordinate system with polar axis being wk. Denote s and θ the radial and
angular (in radians) coordinates of h, respectively (positive angular direction of the polar coordinate system is taken so that
wk′

’s angular coordinate is in (0, π)). We have

• The feature h can be expressed as a linear combination of wk and wk′
:

h = s
( sin θ√

K2 − 2K
+ cos θ

)
wk + s(K − 1)

sin θ√
K2 − 2K

wk′
; (28)

• The output of the classifier layer (W , b) is given by

⟨wk′′
,h⟩+ bk′′ =


s cos θ, if k′′ = k;

s
√
K2−2K
K−1 sin θ − s

K−1 cos θ, if k′′ = k′;

−s
√

K
K−2

1
K−1 sin θ −

s
K−1 cos θ, otherwise.

(29)

Note that (29) is invariant to the arbitrary rotation in K-Simplex ETF.

We omit the proof to Proposition C.1 as it can be obtained via simple algebra.

Based on Proposition C.1, we can obtain the (rescaled) MSE and CE losses as a function of (s, θ). Assuming that h belongs
to class k, the rescaled MSE loss defined in (4) w.r.t. h is given by

LossMSE(h;α,M) =
α

2

(
⟨wk,h⟩+ bk −M

)2
+

1

2

∑
k′′ ̸=k

(
⟨wk′′

,h⟩+ bk′′ − 1
)2
, (30)
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where α,M are rescaling parameters. Plugging in the results in (29), we obtain

LossMSE(s, θ;α,M) =
α

2
· (s cos θ −M)

2
+
s2

2
·

(√
K2 − 2K sin θ − cos θ

K − 1

)2

+
s2

2
· (K − 2) ·


√

K
K−2 sin θ + cos θ

K − 1

2

. (31)

Similarly, we may obtain the CE loss as

LossCE(s, θ) = − log

 es cos θ

es cos θ + es
√

K2−2K sin θ−cos θ
K−1 + (K − 2) e−s

√
K

K−2
sin θ+cos θ

K−1

 . (32)

Figure 2 is obtained by plotting the loss functions in (31) and (32).

C.2. Visualization of the Gradient Vector Field

We consider the regime of K → ∞ in which the rescaled MSE loss (31) becomes

lim
K→∞

LossMSE(s, θ;α,M) =
α

2
(s cos θ −M)2 +

1

2
s2 sin2 θ. (33)

Taking the derivative w.r.t. s and θ, we obtain
∂

∂s
lim

K→∞
LossMSE(s, θ;α,M) = s+ (α− 1)s cos2 θ − αM cos θ,

∂

∂θ
lim

K→∞
LossMSE(s, θ;α,M) = αMs sin θ − (α− 1)s2 sin θ cos θ.

(34)

Similarly, we may obtain the gradient for CE as
∂

∂s
lim

K→∞
LossCE(s, θ;α,M) =

esin θ(sin θ − cos θ)

esin θ + ecos θ
,

∂

∂θ
lim

K→∞
LossCE(s, θ;α,M) =

sesin θ(sin θ + cos θ)

esin θ + ecos θ
.

(35)

In Figure 9, we visualize the gradient of MSE (in (34)) and CE (in (35)) losses by plotting their gradient vector fields. It
shows that rescaling of the MSE loss by either increasing M or increasing α helps to align the gradient along the direction
of minimizing θ. Recall that θ determines the classifier’s prediction of the class membership for h while s is irrelevant.

When restricting our attention to a feature h with θ = π
2 , the gradient w.r.t. s and θ becomes s and αMs, respectively. Here,

increasing the rescaling parameters α or M in the range of (1,∞) has the effect of increasing the component of the gradient
along the θ direction while keeping the component along the s direction fixed.
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Figure 9. Visualization of the gradient vector fields with different losses. We fix W as a simplex ETF and illustrate the landscape only
w.r.t. a feature hk,i. For each plot, the s-axis denotes ∥hk,i∥2, and the θ-axis denotes the angle arccos

(〈
hk,i,w

k
〉)

. The arrows point
to gradient descent directions with length proportional to the gradient norm.


