

# Dual Principal Component Pursuit for Learning a Union of Hyperplanes





## EHIGH UNIVERSITY

<sup>1</sup>Johns Hopkins University <sup>2</sup>University of Denver <sup>3</sup>Shanghai Tech University <sup>4</sup>Lehigh University

### Introduction

- Motivation: Many applications in computer vision can be reduced to hyperplane clustering problems (corrupted with outliers)
- Challenges: Existing subspace clustering methods are based on sparse or lowrank approaches, whose theory and algorithms for low-dimensional subspaces do not apply to a union of hyperplanes



Estimating the geometry of a room from its depth map by fitting multiple hyperplanes



Estimating the road condition from points collected by a laser scanner

## Dual Principal Component Pursuit (DPCP)

- Inliers  $X \in \mathbb{R}^{D \times N}$  are N inlier points that lie in the union of K hyperplanes  $\{H_k\}_{k=1}^K$  of  $\mathbb{R}^D$  with unit normal vectors  $\{\mathbf{b}_k\}_{k=1}^K$
- Outliers  $O \in \mathbb{R}^{D \times M}$  are M outlier points that lie in ambient space  $\mathbb{R}^{D}$
- Given dataset  $\tilde{X} = [X, O]$ , DPCP computes a solution  $\mathbf{b}^{\star}$ , ideally a normal to one specific hyperplane, by

$$\min_{\mathbf{b}: \|\mathbf{b}\|_2 = 1} f(\mathbf{b}) := \|X^{T}\mathbf{b}\|_1$$

- Problem (1) is challenging:
- X contains inliers from a union of hyperplanes
- Analysis of learning a single hyperplane cannot be applied here since inliers from other planes also exhibit certain linear structures



### Main Contributions

- Derive both *geometric* and *probabilistic* conditions under which  $\mathbf{b}^{\star}$  is a normal vector to a geometrically dominant hyperplane, denoted by  $H_1$
- Prove a Projected Riemannian SubGradient Method converges linearly to  $\mathbf{b}_1$

|           | Main Contributions                               |                                                                                                                                       |                                                                                                                                    |  |  |
|-----------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Theory    | Deterministic<br>Analysis                        | $\mathbf{b}^{\star} \perp H_1$<br>under some conditions                                                                               | [Tsakiris & Vidal]: a more<br>transparent analysis that<br>explicitly captures data dist.                                          |  |  |
|           | Probabilistic<br>Analysis                        | $\mathbf{b}^{\star} \perp H_1$<br>with high probability if<br>#outliers = O((#inliers of<br>$H_1$ -#remaining inliers) <sup>2</sup> ) | [Lerman & Zhang]: a new<br>probabilistic guarantee with<br>a mild sample complexity:<br>$\Omega(D^3)$ v.s. $\Omega(D^{18} \log D)$ |  |  |
| Algorithm | Projected<br>Riemannian<br>SubGradient<br>Method | linear convergence of $\hat{\mathbf{b}}_t$ to $\mathbf{b}_1$                                                                          | [Tsakiris & Vidal]: a scalable<br>method that has a<br>convergence guarantee                                                       |  |  |

Tianyu Ding<sup>1</sup>, Zhihui Zhu<sup>2</sup>, Manolis Tsakiris<sup>3</sup>, Rene Vidal<sup>1</sup>, Daniel Robinson<sup>4</sup>

#### **Deterministic Global Optimality Analysis** Projected Riemannian SubGradient Method **Initialization:** $\tilde{X}$ , $\{\mu_0, \beta\} \subseteq (0,1)$ and $k \leftarrow 0$ • Informally, $H_1$ is the geometrically dominant hyperplane if: • it has a large enough number of points Spectral initialization: set $\hat{\mathbf{b}}_0 \leftarrow \arg \min \|\tilde{X}^{\mathsf{T}} \mathbf{b}\|_2$ • the data points are well-distributed the other hyperplanes are well-separated from each other Geometrically diminishing step size: $\mu_t \leftarrow \mu_0 \beta^t$ Compute a Riemannian subgradient: $\mathscr{G}(\widehat{\mathbf{b}}_t) \leftarrow (\mathbf{I} - \widehat{\mathbf{b}}_t \widehat{\mathbf{b}}_t^{\mathsf{T}}) \widetilde{X}$ sign $(\widetilde{X}^{\mathsf{T}} \widehat{\mathbf{b}}_t)$ • $\zeta_1$ quantifies the dominance level of $H_1$ : more dominance of $H_1$ leads to larger $\zeta_1$ Update the iterate as: $\widetilde{\mathbf{b}}_{t+1} \leftarrow \widehat{\mathbf{b}}_t - \mu_t \mathscr{G}(\widehat{\mathbf{b}}_t); \ \widehat{\mathbf{b}}_{t+1} \leftarrow \widetilde{\mathbf{b}}_{t+1} / \|\widetilde{\mathbf{b}}_{t+1}\|_2$ Lemma: Any critical point $\mathbf{b}^{\star}$ of (1) is either a normal vector of $H_1$ ( $\mathbf{b}^{\star} \in \{\pm \mathbf{b}_1\}$ ), or has a principal angle $\theta$ from $\mathbf{b}_1$ such that $\theta \ge \theta^{\diamond} := \arccos(1/\zeta_1)$ . **Theorem:** Let $\hat{\theta}_t$ be the principal angle between $\hat{\mathbf{b}}_t$ and $\mathbf{b}_1$ . If $\hat{\theta}_0 < \theta^{\diamond}$ , then with - Remark 1: greater dominance of $H_1$ implies a more restricted location for $\mathbf{b}^{\star}$

• Remark 2: normal vectors of other hyperplanes within a  $\theta^{\diamond}$ -neighborhood of  $\mathbf{b}_1$ cannot be critical points of (1)  $\rightarrow$  Inspires the convergence of an algorithm to  $\mathbf{b}_1$ 



(Left)  $\mathbf{b}_2$ ,  $\mathbf{b}_3$  could be critical points

(Right)  $\mathbf{b}_2$  cannot be a critical point

**Theorem:** Any global solution  $\mathbf{b}^{\star}$  of (1) satisfies  $\mathbf{b}^{\star} \in \{\pm \mathbf{b}_1\}$  as long as  $H_1$  is sufficiently geometrically dominant.

### **Probabilistic Analysis**

Consider a random spherical model:

- M outliers are drawn uniformly from the unit sphere in  $\mathbb{R}^D$
- $N_k$  inliers to  $H_k$  are drawn uniformly from the intersection of  $H_k$  and the unit sphere in  $\mathbb{R}^D$ , where  $N_1 + \cdots + N_K = N$

**Theorem:** Global solutions of (1) are normal vectors of  $H_1$  with high probability if

$$M \le C \cdot \left( N_1 - \sum_{k \ne 1} N_k \right)^{\frac{1}{2}}$$

- *C* is a decreasing function of *D*
- Remark 3: the Theorem implies  $N_1 > N_2 + \cdots + N_K$ , and the non-convex DPCP approach can roughly tolerate #outliers on the order of the square of #inliers
- [Lerman & Zhang] analyzes the same problem while requires a total sampling of  $N + M = \Omega(D^{18} \log D)$  points to make the probability overwhelming
- Our analysis allows a sampling of only  $N + M = \Omega(D^3)$  points to establish a high probable recovery





### The 24th International Conference on **Artificial Intelligence and Statistics**

appropriate initial step size  $\mu_0$  and diminishing factor  $\beta$ , we have  $\sin(\hat{\theta}_t) \leq \beta^k$ .

• Remark 4: the Theorem indicates the above algorithm has a linear convergence rate to  $\mathbf{b}_1$ 

• Convergence may fail if  $\beta$  is too small, while convergence may be slow when  $\beta$  is too large

• In the right figure, D = 9, K = 3, N = 1200,  $N_3 = 0.8N_2 = 0.8^2N_1$ , the outlier ratio M/(M+N) = 0.3, and  $\mu_0 = 0.01$ 



### Hyperplane Clustering with DPCP

• K-subspaces (KSS) [Bradley & Mangasarian] is a clustering method that alternates between assigning data to clusters and estimating a subspace for each cluster using PCA, which is known to be sensitive to outliers

• We integrate DPCP into KSS (DPCP-KSS) by using DPCP to estimate the geometrically dominant hyperplane for each cluster due to its robustness in fitting a hyperplane under a UoH model

• We also leverage an ensemble of DPCP-KSS via the EKSS [Lipor et al.] and CoRe [Lane et al.] frameworks to potentially further boost the performance

|                      | D=4    |        |        |        |  |
|----------------------|--------|--------|--------|--------|--|
|                      | K = 2  | K = 3  | K = 4  | K = 5  |  |
| MKF                  | 0.7937 | 0.6263 | 0.5548 | 0.4643 |  |
| $\operatorname{SCC}$ | 0.9445 | 0.9209 | 0.9093 | 0.8784 |  |
| EnSC                 | 0.7011 | 0.4912 | 0.3913 | 0.3254 |  |
| SC-ADMM              | 0.6801 | 0.4810 | 0.3795 | 0.3175 |  |
| SSC-OMP              | 0.5707 | 0.4134 | 0.3291 | 0.2747 |  |
| PCP-KSS              | 0.9834 | 0.9463 | 0.8985 | 0.8103 |  |
| CoP-KSS              | 0.9614 | 0.8747 | 0.8300 | 0.7630 |  |
| PCA-KSS              | 0.9601 | 0.8623 | 0.8142 | 0.7461 |  |
| PCP-EKSS             | 0.9889 | 0.8807 | 0.9778 | 0.9489 |  |
| CoP-EKSS             | 0.8278 | 0.8393 | 0.8772 | 0.7938 |  |
| PCA-EKSS             | 0.8278 | 0.8274 | 0.8517 | 0.7542 |  |
| CP-CoRe-KSS          | 0.9832 | 0.9715 | 0.9561 | 0.9599 |  |
| P-CoRe-KSS           | 0.9612 | 0.8992 | 0.9065 | 0.8907 |  |
| A-CoRe-KSS           | 0.9603 | 0.8981 | 0.8769 | 0.8586 |  |

Table: Clustering accuracy for KSS variants and methods designed for clustering low dimensional subspaces. Figure: Visualization in clustering four hyperplanes from a 3D point cloud of NYUdepthV2.

