
• Informally,  is the geometrically dominant hyperplane if:  
• it has a large enough number of points 
• the data points are well-distributed 
• the other hyperplanes are well-separated from each other 

•  quantifies the dominance level of : more dominance of  leads to larger  

Lemma: Any critical point  of (1) is either a normal vector of  ( ), 

or has a principal angle  from  such that . 

• Remark 1: greater dominance of  implies a more restricted location for  

• Remark 2: normal vectors of other hyperplanes within a -neighborhood of  

cannot be critical points of (1)         Inspires the convergence of an algorithm to   
                                                                    

Theorem: Any global solution  of (1) satisfies  as long as  is 
sufficiently geometrically dominant. 
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Dual Principal Component Pursuit for Learning a Union of Hyperplanes

Introduction
• Motivation: Many applications in computer vision can be reduced to hyperplane 

clustering problems (corrupted with outliers) 
• Challenges: Existing subspace clustering methods are based on sparse or low-

rank approaches, whose theory and algorithms for low-dimensional subspaces  
do not apply to a union of hyperplanes

Deterministic Global Optimality Analysis

Dual Principal Component Pursuit (DPCP)
• Inliers  are  inlier points that lie in the union of  hyperplanes 

 of  with unit normal vectors  

• Outliers  are  outlier points that lie in ambient space  
• Given dataset , DPCP computes a solution , 

ideally a normal to one specific hyperplane, by 
(1)         

• Problem (1) is challenging: 
•  contains inliers from a union of hyperplanes 
• Analysis of learning a single hyperplane 

      cannot be applied here since inliers from other 
      planes also exhibit certain linear structures
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Estimating  the geometry of  a room from its 
depth map by fitting multiple hyperplanes

Estimating the road condition from 
points collected by a laser scanner
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Deterministic Global Optimality Analysis

• Derive both geometric and probabilistic conditions under which  is a normal 
vector to a geometrically dominant hyperplane, denoted by  

• Prove a Projected Riemannian SubGradient Method converges linearly to 
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Main Contributions

Theory

Deterministic 
Analysis under some conditions

[Tsakiris & Vidal]: a more 
transparent analysis that 

explicitly captures data dist.

Probabilistic 
Analysis

with high probability if 
#outliers = O((#inliers of     
___#remaining inliers)2)

[Lerman & Zhang]: a new 
probabilistic guarantee with 
a mild sample complexity: 

Algorithm
Projected 

Riemannian 
SubGradient 

Method

linear convergence of  [Tsakiris & Vidal]: a scalable 
method that has a 

convergence guarantee
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Probabilistic Analysis
Consider a random spherical model: 
•  outliers are drawn uniformly from the unit sphere in  

•  inliers to  are drawn uniformly from the intersection of  and the unit 

sphere in , where  

Theorem: Global solutions of (1) are normal vectors of  with high probability if  

                                                   

•  is a decreasing function of  

• Remark 3: the Theorem implies , and the non-convex DPCP 
approach can roughly tolerate #outliers on the order of the square of #inliers 

• [Lerman & Zhang] analyzes the same problem while requires a total sampling of
 points to make the probability overwhelming 

• Our analysis allows a sampling of only  points to establish a high 
probable recovery
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Projected Riemannian SubGradient Method
Initialization:  

Spectral initialization: set  

Geometrically diminishing step size:  

Compute a Riemannian subgradient:  

Update the iterate as:  

Theorem: Let  be the principal angle between  and . If , then with 

appropriate initial step size  and diminishing factor , we have . 

• Remark 4: the Theorem indicates the above 
   algorithm has a linear convergence rate to  

• Convergence may fail if  is too small, while 
   convergence may be slow when  is too large 

• In the right figure, , , ,   
 , the outlier ratio  

 , and   
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Hyperplane Clustering with DPCP
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• K-subspaces (KSS) [Bradley & Mangasarian] is a clustering method that 
alternates between assigning data to clusters and estimating a subspace for each 
cluster using PCA, which is known to be sensitive to outliers  

• We integrate DPCP into KSS (DPCP-KSS) by using DPCP to estimate the 
geometrically dominant hyperplane for each cluster due to its robustness in fitting 
a hyperplane under a UoH model 

• We also leverage an ensemble of DPCP-KSS via the EKSS [Lipor et al.] and 
CoRe [Lane et al.] frameworks to potentially further boost the performance 
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Table 2: Mean hyperplane clustering accuracy for different methods over 50 independent experiments.

D = 4 D = 9
K = 2 K = 3 K = 4 K = 5 K = 2 K = 3 K = 4 K = 5

MKF 0.7937 0.6263 0.5548 0.4643 0.5840 0.3973 0.2949 0.2470
SCC 0.9445 0.9209 0.9093 0.8784 0.9126 0.5940 0.3138 0.2519
EnSC 0.7011 0.4912 0.3913 0.3254 0.6223 0.3996 0.3125 0.2540

SSC-ADMM 0.6801 0.4810 0.3795 0.3175 0.6683 0.4010 0.2999 0.2548
SSC-OMP 0.5707 0.4134 0.3291 0.2747 0.5267 0.3573 0.2732 0.2232
DPCP-KSS 0.9834 0.9463 0.8985 0.8103 0.9927 0.9807 0.8051 0.5004
CoP-KSS 0.9614 0.8747 0.8300 0.7630 0.9706 0.9358 0.8380 0.5110
PCA-KSS 0.9601 0.8623 0.8142 0.7461 0.9619 0.9243 0.8074 0.5130

DPCP-EKSS 0.9889 0.8807 0.9778 0.9489 0.9938 0.9517 0.4908 0.2920
CoP-EKSS 0.8278 0.8393 0.8772 0.7938 0.8271 0.7900 0.3706 0.2867

PCA-EKSS 0.8278 0.8274 0.8517 0.7542 0.8221 0.7539 0.3660 0.2868
DPCP-CoRe-KSS 0.9832 0.9715 0.9561 0.9599 0.9928 0.9857 0.9784 0.9628

CoP-CoRe-KSS 0.9612 0.8992 0.9065 0.8907 0.9706 0.9415 0.9258 0.9089
PCA-CoRe-KSS 0.9603 0.8981 0.8769 0.8586 0.9619 0.9370 0.9278 0.9083

Ensemble KSS (EKSS). The performance of KSS is
sensitive to its initialization because the problem is non-
convex. A practical approach is to repeat the process
for multiple random initializations and then pick the
best one, or combine the results together in a certain
way. The Ensemble KSS (EKSS) (Lipor et al., 2018)
constructs an affinity matrix whose (i, j)th entry is the
number of times the ith and jth points are clustered
together, and then applies spectral clustering to obtain
clustering results.

Cooperative Re-initialization (CoRe) KSS. The
Cooperative Re-initialization (CoRe) (Lane et al., 2019)
framework optimizes a group of clustering results (repli-
cas) by greedily swapping clusters between them to im-
prove the overall quality. Both EKSS and CoRe expect
the clustering in each replica to be partially correct,
and that the same pattern of errors will not be made by
all replicas. CoRe is capable of identifying bad clusters
in a replica and swapping them with better alternatives
by monitoring the change in the objective value, and
hence it is observed to be more efficient than EKSS.

Since the above vaiants of KSS use PCA to fit a hy-
perplane to a cluster, we denote them as PCA-KSS,
PCA-EKSS, and PCA-CoRe-KSS. To improve their per-
formance, we replace PCA by our DPCP approach with
RSGM (Algorithm 1) and denote these KSS variants by
DPCP-KSS, DPCP-EKSS, and DPCP-CoRe-KSS. We
also use the CoP (Rahmani and Atia, 2017a) to fit the
hyperplane for each cluster, resulting in the three KSS
variants CoP-KSS (Gitlin et al., 2018), CoP-EKSS (Li-
por et al., 2018), and CoP-CoRe-KSS.

Synthetic Experiments. The data are generated
based on the random model in Theorem 2. All results
are obtained on a 64-bit machine with 2.6GHz Intel
Core i7 CPU. We first test the effect of using PCA,
DPCP, and CoP in KSS. The DPCP approach is imple-
mented with RSGM (Algorithm 1), where the initial
step size µ0 is determined by using a backtracking line

search during the first iteration and the diminishing
factor � is fixed to be 0.9. Figure 3 shows the mean hy-
perplane clustering accuracy (over 100 independent ex-
periments) versus iterations, with all methods using the
same initialization. DPCP-KSS outperforms the others
on the configuration, with average running times for
DPCP-KSS, CoP-KSS, and PCA-KSS of 0.99s, 2.11s,
and 0.20s, respectively.

Next, we compare the performance of the methods
discussed above with other state-of-the-art subspace
clustering algorithms that include MKF (Zhang et al.,
2009), SCC (Chen and Lerman, 2009), SSC-ADMM (El-
hamifar and Vidal, 2013), EnSC (You et al., 2016a),
and SSC-OMP (You et al., 2016b). The test4 uses
D = 4, 9, K = 2, 3, 4, 5, N = 50KD (each plane has
the same number of points so that Nk = 50D), and

M
M+N = 0.3. Since the KSS-style methods (without
ensemble) are sensitive to initialization, we run them
10 times with random initializations until convergence
(tolerance of 0.001) or 100 iterations is reached, and
then select the best (i.e., the one with the lowest ob-
jective value). The CoRe methods operate directly on
these 10 replicas to return an improved clustering result
by aggregating the knowledge. For the EKSS-like meth-
ods, in each replica we run the KSS-style methods for
only 10 iterations but build the affinity matrix based
on 1000 such replicas, which is suggested in Lipor et al.
(2018). Table 2 reports the mean clustering accuracy
of the methods on 50 independent instances with the
highest two scores in each column given in bold.

One can see that the SC methods EnSC, SSC-ADMM,
and SSC-OMP, which are designed for the low-relative
dimension setting, are among the least competitive for
clustering hyperplanes. Also, MKF and SCC do not
perform well. Among the other methods, we observe
that within each scheme, algorithms that involve DPCP

4The ambient dimension D for the synthetic experiments
follows Tsakiris and Vidal (2017c).
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Table: Clustering accuracy for KSS variants and methods  
           designed for clustering low dimensional subspaces. 
Figure: Visualization in clustering four hyperplanes from a 
            3D point cloud of NYUdepthV2.
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