JOHNS HOPKINS

MATHEMATICAL INSTITUTE
for DATA SCIENCE

UNIVERSITYof

DENVER

<

LEHIGH

UNIVERSIT?Y

K Introduction \
« Motivation: Many applications in computer vision can be reduced to hyperplane

clustering problems (corrupted with outliers)

« Challenges: Existing subspace clustering methods are based on sparse or low-
rank approaches, whose theory and algorithms for low-dimensional subspaces
do not apply to a union of hyperplanes
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Estimating the geometry of a room from its Estimating the road condition from
depth map by fitting multiple hyperplanes points collected by a laser scanner

Dual Principal Component Pursuit (DPCP)

. Inliers X € RPN are N inlier points that lie in the union of K hyperplanes
{Hk}f:1 of RP with unit normal vectors {bk}f:1

. Outliers O € RP*M are M outlier points that lie in ambient space R”
. Given dataset X = [X, O], DPCP computes a solution b*,

ideally a normal to one specific hype[pTIane, by o 11 ‘\(ilt(l;ers
() min f(b):= [X"B]|, ° CN
b [b]l,=1 ° e * 1
 Problem (1) is challenging: ® Noo 3'0 p
X contains inliers from a union of hyperplanes - 0
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* Analysis of learning a single hyperplane

cannot be applied here since inliers from other {
planes also exhibit certain linear structures H
Main Contributions

f[)erive both geometric and probabilistic conditions under which b* is a normam

vector to a geometrically dominant hyperplane, denoted by H,

- Prove a Projected Riemannian SubGradient Method converges linearly to b,

Main Contributions

[Tsakiris & Vidal]: a more
transparent analysis that
explicitly captures data dist.
[Lerman & Zhang]: a new
probabilistic guarantee with
a mild sample complexity:
Q(D>) v.s. Q(D'®log D)

b* L H,
under some conditions

b* L H,
with high probability if
#outliers = O((#inliers of
H,— #remaining inliers)?)
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Deterministic Global Optimality Analysis

- Informally, H, is the geometrically dominant hyperplane if:

~

* it has a large enough number of points
 the data points are well-distributed
* the other hyperplanes are well-separated from each other

- {; quantifies the dominance level of H,: more dominance of H, leads to larger {;

Lemma: Any critical point b* of (1) is either a normal vector of H, (b* € {xb,}),
or has a principal angle € from b, such that @ > 8° := arccos(1/¢)).

. Remark 1: greater dominance of H, implies a more restricted location for b*

« Remark 2: normal vectors of other hyperplanes within a 8°-neighborhood of b,

cannot be critical points of (1)

b: by bo

(Left) b,, b could be
critical points

(Right) b, cannot be a
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Projected Riemannian SubGradient Method
Initialization: X, o, £} € (0,1)and k < O

Spectral initialization: set /l;o — arg min || X'b||,
Ib]l,=1

Geometrically diminishing step size: y, < pf’
Compute a Riemannian subgradient: ?(/l;t) «— (I — /l;t/l;;r))?sign(XT/l;t)
Update the iterate as: b, | « b, — uZ(b):; B,H < b, /IIb,,,1l

Theorem: Let /H\t be the principal angle between /l;t and b,. If (/9\0 < 6°, then with

appropriate initial step size y, and diminishing factor f, we have sin( ‘/9\;) < ,Bk.

« Remark 4: the Theorem indicates the above

Theorem: Any global solution b* of (1) satisfies b* € {xb,} as long as H, is

@:iently geometrically dominant.

K Probabilistic Analysis
C

onsider a random spherical model:

critical point

- M outliers are drawn uniformly from the unit sphere in R”
- N, inliers to H,, are drawn uniformly from the intersection of H, and the unit

sphere in R”, where N| + --- + N, = N

Theorem: Global solutions of (1) are normal vectors of H; with high probability if
2
k#1
 (C'is a decreasing function of D

 Remark 3: the Theorem implies N; > N, + -+ + N, and the non-convex DPCP
approach can roughly tolerate #outliers on the order of the square of #inliers

« [Lerman & Zhang] analyzes the same problem while requires a total sampling of
N+ M = Q(D'8log D) points to make the probability overwhelming
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107 p<
algorithm has a linear convergence ratetob;,  [1 -,
~ B \\\
- Convergence may fail if f is too small, while v 1051 “~~,
—~— . S o
convergence may be slow when [ is too large (& —E—or ~..
. : z ..... B=0.6 Y.
e In the right figure, D = 9, K = 3, N = 1200, =410} — 3209 -
N, = 0.8N, = 0.8?N,, the outlier ratio : ' '
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iteration

Q/(M+ N)=0.3,and pu, = 0.01

Hyperplane Clustering with DPCP

fK-subspaces (KSS) [Bradley & Mangasarian] is a clustering method that \

alternates between assigning data to clusters and estimating a subspace for each
cluster using PCA, which is known to be sensitive to outliers

* We integrate DPCP into KSS (DPCP-KSS) by using DPCP to estimate the
geometrically dominant hyperplane for each cluster due to its robustness in fitting
a hyperplane under a UoH model

» We also leverage an ensemble of DPCP-KSS via the EKSS [Lipor et al.] and
CoRe [Lane et al.] frameworks to potentially further boost the performance

D — 4 Annotation
K =2 K =3 K =14 K=5
MKF 0.7937 0.6263 0.5548 0.4643
SCC 0.9445 0.9209 0.9093 0.8784
EnSC 0.7011 0.4912 0.3913 0.3254 4
SSC-ADMM 0.6801 0.4810 0.3795 0.3175 T
SSC-OMP 0.5707 0.4134 0.3291 0.2747 o
DPCP-KSS 0.9834 0.9463 0.8985 0.8103 r‘ ' )
CoP-KSS 0.9614 0.8747 0.8300 0.7630 5 N
PCA-KSS 0.9601 0.8623 0.8142 0.7461 ‘
DPCP-EKSS 0.9889 0.8807 0.9778 0.9489 CoP-EKSS DPCP-EKSS
CoP-EKSS 0.8278 0.8393 0.8772 0.7938 N ey el
PCA-EKSS 0.8278 0.8274 0.8517 0.7542 ]‘ - " -
DPCP-CoRe-KSS | 0.9832 0.9715 0.9561 0.9599 . T
CoP-CoRe-KSS 0.9612 0.8992 0.9065 0.8907 " i
PCA-CoRe-KSS 0.9603 0.8981 0.8769 0.8586 CoP-CoRe-KSS DPCP-CoRe-KSS
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Table: Clustering accuracy for KSS variants and methods

Projected | [Tsakiris & Vidal]: a scalable
: Riemannian | linear convergence of
Algorithm . ~ method that has a
SubGradient b tob
Method ! 1 convergence guarantee

- Our analysis allows a sampling of only N + M = Q(D?) points to establish a high
Q)bable recovery j

3D point cloud of NYUdepthV2.

designed for clustering low dimensional subspaces. EEE_—. S -~
Figure: Visualization in clustering four hyperplanes from a . "QEeesS S




