

Dual Principal Component Pursuit for Robust Subspace Learning: Theory and Algorithms for a Holistic Approach

Motivation

- Problem: Fit a subspace of high relative dimension to corrupted data
- Prior work: Dual Principal Component Pursuit (DPCP) finds a normal vector to a single hyperplane that contains the inliers
- Challenges: Learning a subspace via DPCP requires to recursively find a new basis element of the orthogonal complement subspace, which is inefficient

Estimating the geometry of a room from its depth map by fitting multiple hyperplanes

Estimating the road plane from points collected by a laser scanner

Dual Principal Component Pursuit (DPCP): a Holistic Approach

- Inliers \mathcal{X} span a d-dimensional subspace \mathcal{S}
- Outliers \mathcal{O} lie in ambient space \mathbb{R}^D
- The codimension of S is c := D d
- Ambient noise \mathcal{E} are additive on inliers
- Dataset $\mathcal{X} = [\mathcal{X} + \mathcal{E}, \mathcal{O}]$
- The holistic DPCP approach simultaneously estimates the entire basis of S^{\perp} by

$$\min_{\boldsymbol{B} \in \mathbb{R}^{D \times c}} f(\boldsymbol{B}) := \left\| \widetilde{\boldsymbol{\mathcal{X}}}^{\top} \boldsymbol{B} \right\|_{1,2} = \sum_{j} \left\| \widetilde{\boldsymbol{x}}_{j}^{\top} \boldsymbol{B} \right\|_{2}$$

s.t.
$$\boldsymbol{B}^{\top}\boldsymbol{B} = \mathbf{I}$$

 $+ \mathcal{E}$ noisy inliers inliers $oldsymbol{\mathcal{X}} \in \mathbb{R}^{D imes N}$

• Intuition: It finds a solution B^* with orthonormal columns that are orthogonal to as many data points as possible

(1)

Main Contributions

- We provide the landscape analysis of the holistic DPCP problem for any codimension $c \ge 1$, while prior work only considered the problem with c = 1
- We establish the convergence theory of a Projected Riemannain SubGradient Method for solving the problem under the noisy setting, while prior work only showed it converges to S^{\perp} with noiseless data

	Main Contributions	
Theory	Geometric Deterministic Analysis	$\operatorname{dist}(\boldsymbol{B}^*, \mathcal{S}^{\perp}) \propto \operatorname{noise level}$
	Geometric Probabilistic Analysis	dist $(\boldsymbol{B}^*, \mathcal{S}^{\perp}) \propto$ noise level with high probability if #outliers = $O((\#inliers)^2)$
Algorithm	Projected Riemannian SubGradient Method	$\begin{array}{l} \begin{array}{l} \text{locally linear convergence} \\ \text{dist}(\boldsymbol{B}^*, \mathcal{S}^{\perp}) = O(\beta^k) + \text{const} \\ \beta < 1, \text{ const} \propto \text{noise level} \end{array}$

Tianyu Ding¹, Zhihui Zhu², Rene Vidal¹, Daniel Robinson³

³Lehigh University ¹Johns Hopkins University ²University of Denver

$$heta \leq heta^{\diamond}$$
 or $heta \geq heta$

where $0 \le \theta^{\diamond} \le \theta^{\natural} \le \pi/2$ are determined by outlier-to-inlier and noise-to-inlier ratio. Remark: Any critical point is either close to S^{\perp} or close to S

Theorem: Any global solution B^* of (1) must be close to S^{\perp} such that $\theta \leq \theta^{\diamond}$ as long as the outlier-to-inlier and noise-to-inlier ratios are small.

	$ heta^\diamond$	$ heta^{ atural}$
smaller $\ \mathcal{E}\ $ smaller $\ \mathcal{O}\ $	$\downarrow 0$	$\uparrow \frac{\pi}{2}$

• If $\mathcal{E} = 0$, then $\theta^{\diamond} = 0$, which means the global solution B^* is exactly an orthonormal basis of \mathcal{S}^{\perp}

Probabilistic Analysis

- Columns of outliers \mathcal{O} are drawn uniformly from the unit sphere
- Columns of noisy inliers $\mathcal{X} + \mathcal{E}$ are drawn by first independently generating inliers from $\mathcal{N}(\mathbf{0}, (1/d)\mathcal{P}_{\mathcal{S}})$ and noise from $\mathcal{N}(\mathbf{0}, (\sigma^2/D)\mathbf{I}_D)$, and then projecting their sum to the unit sphere
- Under this random model, the SNR is $\mathbb{E}[\|\mathcal{X}\|_F]/\mathbb{E}[\|\mathcal{E}\|_F] = 1/\sigma$

Theorem: Any global solution of (1) must lie in a neighbor hood of S^{\perp} such that $\sin(\theta) \lesssim \sqrt{\sigma}/(1-\sigma)$

with high probability if

$$M \lesssim \frac{1 - \sigma}{cdD \log^2 D} N^2$$

• The holistic DPCP approach can handle more outliers if $\sigma \downarrow$, $c \downarrow$, $d \downarrow$, $D \downarrow$

 Comparison with state-of-the-art: other existing methods can only handle at most M = O(N) outliers in theory [Lerman and Maunu, 2018]

ICML | 2021

Thirty-eighth International Conference on Machine Learning

Experiments

• We plot the phase transition of distance between computed basis and groundtruth basis when varying outlier ratio M/(M + N) and noise level σ • Example: D = 1000, c = 50, N = 10000; the lighter the better

