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Summary

The optimization problem.
def 1
. e
P € L™ ) ol
minimize { (x) fi(x) +X||x||
()

o Finite-sum problem, N is huge, all f; is continuously differentiable and A > 0.

@ The solution tends to have high sparsity and low objective function value under
proper .

Several examples of f(x):
o Logistic Loss:

N

1 T

= 2 log(1 47
i=1

@ Neural Network:
N
Z Weo(We - o(Wixi+c1) - +cn) + oo — i)
t:l

with o(+) any activation function.
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Summary

The optimization problem.

N
.1
m1£1€1%1111Z6 N ;ﬁ(x) + )‘”x”l

o All f; is continuously differentiable, and A > 0

Different approaches:

@ Well studied in deterministic optimization, i.e., high sparse solutions with low
objective function values, with numerous methods:
e first-order : steepest descent (minimum norm element of subdifferential)
proximal full gradient method (Prox-FG), ISTA/FISTA (
)

e second-order :
- proximal Newton : LIBLINEAR (newGLMNET)
- orthant-based : FaRSA ( ), OBA (
)
@ Limited studied in stochastic optimization, i.e., solutions with low objective
function values but typically with low sparsity with several methods:

e Prox-SG and its variants, e.g., RDA and Prox-SVRG ( )
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Summary

Our contributions

@ Propose the Orthant Based Proximal Stochastic Gradient Method (OBProx-SG)
effectively to achieve solutions of both high sparsity and low objective function
value in stochastic settings.

@ OBProx-SG utilizes a to predict a support cover of the solution to
construct an orthant face and an to effectively exploit the sparsity.

@ Outperform other state-of-the-art methods comprehensively on sparsity
exploration and objective convergence and computational cost.

OBProx-SG | Prox-SG | RDA | Prox-SVRG
Sparsity Exploration v - - -
Objective Convergence v v - v
Computational Cost v v v -

Remark: on deep learning experiments, with the same accuracy, the solutions
by OBProx-SG usually possess multiple-times higher sparsity than others.

o Applications: Feature selection and model compression. (The sparsity can be
used as compression ratio. Two heavy Al products on Microsoft AI Cognitive
Service has been dramatically compressed via OBProx-SG without accuracy
regression and successfully deployed. )
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OBProx-SG

Target problem
|
oo o A . 1
minimize ,-:E 1ﬁ(x) + Allx[|: M

@ Under proper ), its optimal solution x* is highly sparse (including many zero
elements).

How to identify correct zero variables in the solution?
T0(x) == {i: [x); = 0},Z7°(x) := {i : [x]; # 0}
Two Steps:

Prox-SG Step: Predict a non-zero element cover (support cover) of optimal solutions.
|Z7%(xz)| > |Z7°(x*)| in stochastic setting.

Orthant Step: Exploit the sparsity on the predicted non-zero elements.
A switch: Select Prox-SG Step or Orthant Step.
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OBProx-SG

Outline of OBProx-SG

Algorithm 1 OBProx-SG

1: Input: xo € R", o € (0, 1).
2: fork=0,1,2,... do

3:
4:
5

o

Switch Prox-SG Step or Orthant Step by Algorithm 4.
if Prox-SG Step is selected then

Compute the Prox-SG Step update:

X1 < Prox-SG(xg, ay) by Algorithm 2.
else if Orthant Step is selected then

Compute the Orthant Step update:

Xpt1 < Orthant(xg, i) by Algorithm 3.

Update oy given oy according to some rule.
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OBProx-SG

Prox-SG Step : Predict support cover (non-zero elements).

Algorithm 2 Prox-SG Step

1: Input: Current iterate x;, and step size o.
2: Compute the stochastic gradient of f on 5y

Vfgk (xk) — ﬁ Z Vf,(xk) (2)

i€By

3: Return x;4; < PI'OXak)\”.Hl (o — o VfB, (xx)) -

X1 = Proxo, ., (o — Vs, (%)) = argféﬁn EHX — (% — Vg, (x0)) I3 + Allx]
S
(3)

Denote the trial iterate X1 := x — o V[, (xx), then x; 1 is computed efficiently as:

[k\k-i-l]i —ag A, if [35;(4_1],- > oA

a1l = Pt ]i + X, if g]i < —ogeh 4)
0, otherwise
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OBProx-SG

Prox-SG Step : Predict support cover (non-zero elements).

Comments:

@ The Prox-SG step has a sparsity promition mechanism to project variables to
zero if trial iterates falls into an interval [—oy A, ax A\] (Projection region).

@ Due to stochastic nature and the small oy selection in stochastic problems, rare
variables are projected to zero.

@ The predicted non-zero elements typically much more than the exact support of
the solutions:
IZ70 ()| > |Z7°(x").
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OBProx-SG

Orthant Step : We define the orthant face Oy, that x; lies in to be
O := {x € R" : sign([x];) = sign([x];) or [x]; = 0,1 < i < n}
F(x) can be written precisely as a smooth function F(x) on Oy in the form
F(x) = F(x) = £(x) + Asign(x)"x,

minimize F(x)
x€O0

®)

(6)

Algorithm 3 Orthant Step.

1: Input: Current iterate x;, and step si~ze .
2: Compute the stochastic gradient of F on By,

VFBk xk |B‘ZVF xk

3: Return x;1 < Projo, (x — oszIN?Bk(xk)).

(N

Proje, () defined as [Projo, (z)], := { i it sign(.[z]i) = sign(pudi) .

0 otherwise
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OBProx-SG

Illustration of Orthant Step

Assume x € R3.

[z]s

Th+1

~\= Thor1 o
[z]>

*“AVFB, (zk)
Ok

Tk

\J
Figure: Illustration of Orthant Step with projection, where
Or ={x€R*: [x]; >0,[x]2 >0, [x]s = 0}. (L): 3D view. (R): top view.

@ Xy is more sparser than x; due to [x;1 ], = 0.
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OBProx-SG

Projection Region Comparison

@ Orthant Step is a more aggressive sparsity promotion mechanism than SOTA.

@ It enjoys a much large projection region than others while still maintains
convergence characteristic.
[1:0BProx-SG [1:Prox-SG and Prox-SVRG [J:RDA

1>a,>0
x>0

>

—00 A —apA 0 apA A

Figure: Projection regions of different methods for 1D case at x; > 0.

Projection region: the region that projects trial iterate to zero if it falls in.
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OBProx-SG

Switching Mechanism

Algorithm 4 Switching Mechanism.
1: Input: k&, Np, No.
2: if mod(k, Np + No) < Np then
3: Return Prox-SG Step is selected.
4: else
5 Return Orthant Step is selected.

Convergence analysis supports: either
o Alternatively employ Prox-SG Step and Orthant Step; or

N, epochs N, epochs

N, epochs N, epochs p
‘ Orthant Step “ Orthant Step -

@ Employ Prox-SG Step sufficiently many time, then stick on Orthant Step until
the end. Referred as OBProx-SG+.

Ny, epochs N, epochs N, epochs N, epochs

Prox-SG Step - Orthant Step ‘ Orthant Step ‘ Orthant Step ‘

OBProx-SG+ is recommended due to its attractive property of maintaining sparsity

exploration.
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Convergence Results

Convergence under alternating schema

We define the gradient mapping as follows

G(x) = % (x = Proxgx ., (x = nVf (%)) - ®)

Theorem 1
Suppose Np < oo and Np < 00.
@ the step size {ay} is O(1/k), then lim inf;_, o E||Go, (x)]|3 = O.

@ fis u-strongly convex, and oy = o for any o < min{ﬁ, 1}, then
LC?

E[F(oy1) — F] < (1 = 20)"" [F(x0) — F7] + Ee ©)

where xp is the number of Prox-SG Steps employed until k-th iteration.
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Convergence Results

Convergence under practical plus schema

In practice:
@ Repeatedly switch back to Prox-SG Step since most likely it is going to ruin the
sparsity from the previous iterates by Orthant Step due to the stochastic nature.

@ OBProx-SG+ is preferred, i.e., Np < 00, No = o0.

Theorem 2

Suppose Np < 0o, No = 00, f is convex on {x : ||x — x*||, < 4; } and
[xnp — x*[]2 < &. Setk := Np +1, (t € Z*), step size oy = O(ﬁ), and
mini-batch size |By| = O(¢). Then for any 7 € (0, 1), we have {x;} converges to

some stationary point in expectation with probability at least 1 — 7, i.e.,

P(lim inf E||Ga, (x)]15 =0) > 1 — 7.
k— 00
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Numerical Experiments

Convex experiments

Focus on the convex /;-regularized logistic regression with the form

N
1 T
P § 1 1 —1i(x" di+b) A
r(rilbr)nerﬁg? N P og( ¢ ) Il

for binary classification.

Dataset N n Attribute Dataset N n Attribute
a%a 32561 123 binary {0, 1} real-sim 72309 20958 real [0, 1]
higgs 11000000 28 real [—3,41] revl 20242 47236 real [0, 1]
kdda 8407752 20216830 real [—1,4] url_combined 2396130 3231961 real [—4,9]

news20 19996 1355191 unit-length w8a 49749 300 binary {0, 1}

Table: Summary of datasets
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Numerical Experiments

@ Best value is marked as bold.
@ OBProx-SG(+) performs competitively on objective function values.

@ OBProx-SG(+) performs much better on sparsity exploration (lowest density).

Table: Objective function values F/f for tested algorithms on convex problems

Dataset Prox-SG RDA Prox-SVRG OBProx-SG OBProx-SG+
a%a 0.332/0.330 0.330/0.329 0.330/0.329 0.327/0.326 0.329/ 0.328
higgs 0.326 / 0.326 0.326 / 0.326 0.326 / 0.326 0.326 / 0.326 0.326/ 0.326
kdda 0.102/0.102 0.103/0.103 0.105 /0.105 0.102/0.102 0.102/0.102
news20 0.413/0.355 0.625/0.617 0.413/0.355 0.413/0.355 0.413/0.355
real-sim 0.164 /0.125 0.428/0.421 0.164 / 0.125 0.164 /0.125 0.164 /0.125
revl 0.242/0.179 0.521/0.508 0.242/0.179 0.242/0.179 0.242/0.179
url_combined 0.050/0.049 0.634/0.634 0.078 /0.077 0.050/0.049 0.047 / 0.046
w8a 0.052/0.048 0.080/0.079 0.052/0.048 0.052/0.048 0.052/0.048
Table: Density (%) of solutions for tested algorithms on convex problems
Dataset Prox-SG RDA Prox-SVRG OBProx-SG OBProx-SG+
a%a 96.37 86.69 61.29 62.10 59.68
higgs 89.66 96.55 93.10 70.69 70.69
kdda 0.09 18.62 3.35 0.06
news20 4.24 0.44 0.20 0.19
real-sim 53.93 52.71 22.44 22.44 22.15
revl 16.95 9.61 4.36 4.33
url_combined 7.73 41.71 6.06 3.00
w8a 99.00 99.83 78.07 78.03 74.75
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Numerical Experiments

Runtime Comparison:

@ Prox-SG, RDA and OBProx-SG(+) are almost as efficient as each other,

@ Prox-SVRG takes much more time due to the computation of full gradient.

1.0 A

0.5 4

Relative runtime

a%a higgs kdda news20

Figure: Relative runtime for tested algorithms on convex problems

OBProx-SG

revl

Prox-SG
RDA
Prox-SVRG
OBProx-SG
OBProx-SG+
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Numerical Experiments

Nonconvex experiments

@ Model Architectures: ResNet18 and MobileNetV1.
o Datasets: CIFAR10 and Fashion-MNIST.

Table: Final objective values F /f for tested algorithms on non-convex problems

Backbone Dataset Prox-SG RDA Prox-SVRG OBProx-SG OBProx-SG+
MobileNetV1 CIFARI0O 1.473/0.049 4.129/0.302 1.921/0.079 1.619/0.048  1.453/0.063
Fashion-MNIST  1.314/0.089 4.901/0.197 1.645/0.103 2.119/0.089  1.310/0.099

ResNet8 CIFAR10 0.781/0.034  1.494/0.051 0.815/0.031  0.746/0.021  0.755/0.044
Fashion-MNIST  0.688/0.103  1.886/0.081  0.683/0.074  0.682/0.074  0.689/0.116

Table: Density/testing accuracy (%) for tested algorithms on non-convex problems

Backbone Dataset Prox-SG RDA Prox-SVRG OBProx-SG ~ OBProx-SG+
MobileNetV1 CIFARI10 14.17/9098 74.05/81.48 92.26/87.85 9.15/90.54 2.90/90.91
Fashion-MNIST 5.28/94.23 74.67/92.12  7540/93.66  4.15/94.28 1.23/94.39
ResNetl8 CIFARI10 11.60/92.43  41.01/90.74 37.92/9248  2.12/92.81 0.88/92.45
Fashion-MNIST 6.34/94.28 42.46/93.66 35.07/94.24  5.44/94.39 0.29/93.97
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Numerical Experiments

@ OBProx-SG(+) performs competitively among the methods with respect to the
final objective function values;

@ OBProx-SG(+) computes much sparser solutions. Particularly, OBProx-SG+
achieves the highest sparse (lowest dense) solutions on all non-convex tests, of
which the solutions are 4.24 to 21.86 times sparser than those of Prox-SG.

@ The density of OBProx-SG+ drops dramatically after switching to Orthant Step.

100 T T = —— e R e
RDA ] RDA
_ 8o -+ Prox-SVRG _ 8o -+ Prox-SVRG
B — OBProx-sG+ | R _ | W o R —— OBProx-SG+
3 60 > 60
2 2 .
2 40 - e ) N B B (TP
3 s
20— e 20
--------------
0 0
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Epoch Epoch

Figure: Density Evolution. (L): MobileNetV1 on CIFAR10. (R): ResNet18 on Fashion-MNIST
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Conclusion

Conclusion

OBProx-SG is designed to
o explore the sparsity of solution effectively in stochastic settings.
@ maintain the convergence property.
@ sacrifice no generalization performance
@ work in both convex and nonconvex settings

for effectively solving ¢;-regularized convex optimization problems.

Current OBProx-SG’s optimizer:
@ has been implemented as a Pytorch optimizer instance.

@ is avaliable at https://github.com/tianyic/obproxsg.
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https://github.com/tianyic/obproxsg

Thank you!
Q&A
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