Dual Principal Component Pursuit for Robust Subspace Learning: Theory and Algorithms for a Holistic Approach

Tianyu Ding¹ Rene Vidal¹

ICML | 2021

Thirty-eighth International Conference on Machine Learning

Zhihui Zhu² Daniel P. Robinson³

Problem: Learning a Subspace from Corrupted Data

Recursively finds a new basis element b of \mathcal{S}^\perp

This paper considers a holistic DPCP approach for simultaneously computing the entire basis of S^{\perp}

• Low relative dimension ($d/D \approx 0$)

	Method	# of outliers it can tolerate
	Outlier Pursuit [Xu et al. 10]	M = O(N)
	REAPER [Lerman et al. 15]	M = O(N)
	CoP [Rahmani and Aita, 16]	M = O(N)
•	GGD [Maunu et al. 19]	M = O(N)
sion		

• High relative dimension ($d/D \approx 1$)

• DPCP [Tsakiris and Vidal 18, Zhu et al. 18] $M = O(N^2)$ outliers

Dual Principal Component Pursuit (DPCP): A Holistic Approach

d: dimension of SD: ambient dimension c = D - d: codimension

$$\begin{split} \min_{\boldsymbol{B} \in \mathbb{R}^{D \times c}} \left\| \widetilde{\boldsymbol{X}}^{\top} \boldsymbol{B} \right\|_{1,2} &:= \sum_{j} \left\| \widetilde{\boldsymbol{x}}_{j}^{\top} \boldsymbol{B} \right\|_{2} \quad \text{s.t.} \quad \boldsymbol{B}^{\top} \boldsymbol{B} = \mathbf{I} \end{split} \quad \begin{aligned} \text{the recursive apprised on the recursive apprised on the state of the state$$

- Tsakiris and Vidal 18, Zhu
- [Zhu et al. 19] proposed an algorithm solves the holistic problem with noiseless data

We provide a landscape analysis and extend the algorithm under the noisy setting

- Outliers \mathcal{O} are drawn uniformly random from the unit sphere
- Noisy inliers $\mathcal{X} + \mathcal{E}$
 - inliers $\mathcal{X} \subset \mathcal{S}$, Gaussian noise \mathcal{E} with std σ
 - normalize $\mathcal{X} + \mathcal{E}$ to unit norm
- SNR is $\mathbb{E}[\|\mathcal{X}\|_F]/\mathbb{E}[\|\mathcal{E}\|_F] = 1/\sigma$
- Dataset $\widetilde{\mathcal{X}} = [\mathcal{X} + \mathcal{E}, \mathcal{O}]$

no landscape analysis with noisy data

Deterministic and Probabilisitic Analysis

$$\min_{\boldsymbol{B} \in \mathbb{R}^{D \times c}} \left\| \widetilde{\boldsymbol{\mathcal{X}}}^{\top} \boldsymbol{B} \right\|_{1,2} := \sum_{j} \left\| \widetilde{\boldsymbol{x}}_{j}^{\top} \boldsymbol{B} \right\|_{2} \quad \text{s.t.} \quad \boldsymbol{B}^{\top} \boldsymbol{B} = \mathbf{I}$$

Theorem 1: B^* is close to S^{\perp} :

 $\operatorname{Span}(B^*) = \mathcal{S}^{\perp}$

Theorem 2: B^* is close to S^{\perp} : $\sin(\theta^{\diamond}) \lesssim \sqrt{\sigma}/(1-\sigma)$ with high probability if $M \lesssim N^2$.

• Cf. state-of-the-art: existing robust subspace recovery method can only handle at most M = O(N) outliers in theory

Projected Riemannian SubGradient Method

- Spectral initialization: $\boldsymbol{B}_{0} \leftarrow \arg \min_{\boldsymbol{B} \in \mathbb{R}^{D \times c}, \boldsymbol{B}^{\top} \boldsymbol{B} = \mathbf{I}} \left\| \widetilde{\boldsymbol{\mathcal{X}}}^{\top} \boldsymbol{B} \right\|_{F}^{2}$ • Compute a Riemannian SubGradient: $\mathcal{G}(\boldsymbol{B}_k) \leftarrow (\mathbf{I} - \boldsymbol{B}_k \boldsymbol{B}_k^{ op}) \sum_{i} \widetilde{\boldsymbol{x}}_j \mathrm{sign}(\widetilde{\boldsymbol{x}}_j^{ op} \boldsymbol{B}_k)$ Geometrically diminishing step size: $\mu_k \leftarrow \mu_0 \beta^k$
- Update the iterate: $\widehat{\boldsymbol{B}}_{k+1} \leftarrow \boldsymbol{B}_k - \mu_k \mathcal{G}(\boldsymbol{B}_k)$ $\boldsymbol{B}_{k+1} \leftarrow \operatorname{orth}(\widehat{\boldsymbol{B}}_{k+1})$

$\min_{\boldsymbol{B} \in \mathbb{R}^{D \times c}} \left\| \widetilde{\boldsymbol{\mathcal{X}}}^{\top} \boldsymbol{B} \right\|_{1,2} := \sum_{i} \left\| \widetilde{\boldsymbol{x}}_{j}^{\top} \boldsymbol{B} \right\|_{2} \quad \text{s.t.} \quad \boldsymbol{B}^{\top} \boldsymbol{B} = \mathbf{I}$

Theorem 3: B_k converges linearly to S^{\perp} : dist $(\boldsymbol{B}_k, \mathcal{S}^{\perp}) \lesssim \operatorname{dist}(\boldsymbol{B}_0, \mathcal{S}^{\perp})\beta^k + \sqrt{\sigma}$

Experiments

recursively learns one basis element at a time

$$\min_{\boldsymbol{b} \in \mathbb{R}^D} \left\| \boldsymbol{\widetilde{X}}^{\top} \boldsymbol{b} \right\|_1 \quad \text{s.t.} \quad \| \boldsymbol{b} \|_2 = 1$$

Phase transition of dist(computed basis, ground-truth basis) when varying outlier ratio M/(M + N) and noise level σ

$$\min_{\boldsymbol{B} \in \mathbb{R}^{D \times c}} \left\| \widetilde{\boldsymbol{\mathcal{X}}}^{\top} \boldsymbol{B} \right\|_{1,2} := \sum_{j} \left\| \widetilde{\boldsymbol{x}}_{j}^{\top} \boldsymbol{B} \right\|_{2} \quad \text{s.t.} \quad \boldsymbol{B}^{\top} \boldsymbol{B} = \mathbf{I}$$

